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Abstract 

 

We review the skill of thirty coupled climate models participating in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal 

cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, 

Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these 

models represent the impact of climate change by the end of century (2061-2100) under the 

extreme scenario RCP8.5. First, we assess the models’ ability to reproduce the observed timings 

of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope - a measure of 

seasonality within the active monsoon period. Secondly, we apply a threshold-independent 

seasonality index (SI) – a multiplicative measure of precipitation (P) and extent of its 

concentration relative to uniform distribution (relative entropy – RE). We apply SI distinctly 

over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and 

annual precipitation. For the present climate, neither any single model nor the multi-model mean 

performs best in all chosen metrics. Models show overall a modest skill in suggesting right 

timings of the monsoon onset while the RFA slope is generally underestimated. One third of the 

models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI 

during WPR are higher than observed for all basins. When looking at MPR, the models typically 

simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and 

Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most 

of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong 

(Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and 

number of dry days within WPR lower (higher) than observed for these basins. Such skill of the 

CMIP5 models in representing the present-day monsoonal hydroclimatology poses some caveats 

on their ability to represent correctly the climate change signal. Nevertheless, considering the 

majority-model agreement as a measure of robustness for the qualitative scale projected future 

changes, we find a slightly delayed onset, and a general increase in the RFA slope and in the 

extent of precipitation concentration (RE) for MPR. Overall, a modest inter-model agreement 

suggests an increase in the seasonality of MPR and a less intermittent WPR for all basins and for 

most of the study domain. The SI-based indicator of change in the monsoonal domain suggests 

its extension westward over northwest India and Pakistan and northward over China. These 

findings have serious implications for the food and water security of the region in the future. 

 

 

1 Introduction 

 

1.1 Hydroclimatology of High Asia  

 

Climate change has substantial impacts on the hydrological cycle at global (Allan, 2011; Kleidon 

and Renner, 2013; IPCC, 2013; Roderick et al., 2014), regional (Ramanathan et al., 2005; 

Lucarini et al., 2008; Turner and Annamalai, 2012; Hasson et al., 2013 and 2014a), and local 

scales (Roderick et al., 2014; Greve et al., 2014). The issue of understanding the impacts of 

climate change on the hydrological cycle has special relevance for areas dependent upon the 

seasonal water availability and for areas highly vulnerable to hydro-climatic extremes, such as 

South Asia (Hirabayashi et al. 2013; Hasson et al., 2013). Seasonal cycle of precipitation in 

South Asia is the key for ensuring food and water security of one-fifth of the world’s inhabitants 
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(Ho and Kang 1988; Lal et al., 2001; Sperber et al., 2013; Sabeerali et al., 2014) and strongly 

affects the gross domestic product of the agrarian-based economies (Subbiah et al., 2002; Gadgil 

and Gadgil, 2006). Historical observations show that the summer monsoonal rainfall over India 

has been decreasing significantly for the last six decades (Wapna et al., 2013; Bolasina et al., 

2011) while the water table in most of India has already been dropped considerably (Rodell et 

al., 2009). The annual per capita water availability has substantially reduced and it still faces 

growing stress due to population growth and ongoing economic development (Babel and Wahid, 

2008; Eriksson et al., 2009, Rasul, 2014). Such changes might become more pronounced under 

the global warming scenario with ensuing drastic impacts on the socio-economic setup in the 

region. Therefore, assessment of future changes in the precipitation regime and its seasonality 

are critical for the policy makers and relevant stakeholders for the future water resources 

management and long-term planning of the sustainable regional economies. 

 

Presently, the global climate models are applied as a primary tool for projecting future changes 

associated with a variety of anthropogenic greenhouse gas (GHG) emission scenarios and are 

being extensively used to understand the climate system of the Earth and the hydrological cycle 

on global and regional scales. However, reliability of the projected changes largely depends upon 

the skill of these models in adequately representing the physical climatic processes and in 

reproducing the observed hydro-climatic phenomena. Despite substantial improvements in their 

numerics and in the representation of the physical, chemical, and biological processes taking 

place in the climate system, a realistic representation of the hydrological cycle in these models 

has not been achieved, so far. This is due to the fact that in these models some of the crucial fine 

scale hydro-climatic processes that occur on a variety of spatio-temporal scales are not explicitly 

resolved but represented only through parameterization schemes (May, 2002; Hagemann et al., 

2006; Tebaldi and Knutti, 2007). Furthermore, structural limitations of the global climate models 

often lead to the underrepresentation of existent physio-geographical characteristics that greatly 

affect the realism of model simulations. Such inadequate representation may results in a serious 

bias in the crucial parameters and may lead to physical inconsistencies of water and energy 

balance at global (Lucarini and Ragone, 2011; Liepert and Previdi, 2012; Liepert and Lo, 2013) 

and regional scales (Lucarini et al., 2008; Hasson et al., 2013). Given these limitations, it is a 

great challenge for the present-day climate models to describe correctly the hydrological cycle 

over South and Southeast Asia region that features a tremendous diversity in its hydro-climatic 

patterns, determined by its unique physio-geographical characteristics, mainly the extensive 

cryosphere and complex terrain of the Hindu Kush-Karakoram-Himalayan (HKH) ranges and 

Tibetan Plateau (TP).  

 

The hydrology of the study region is determined by form and magnitude of the spatially 

heterogeneous and highly seasonal moisture input from the prevailing large scale circulations 

modes: the western (predominantly winter) mid-latitude disturbances (Wake, 1987; Rees and 

Collins, 2006; Ali et al., 2009) and the South and Southeast Asian summer monsoon (Annamalai 

et al., 2007; Turner and Annamalai, 2012; Hasson et al., 2016). The westerly disturbances are 

extratropical cyclones formed and/or fortified over the Caspian and the Mediterranean Seas, 

which are transported through the southern flank of the Atlantic and Mediterranean storm tracks 

(Hodges et al., 2003; Bengtsson et al., 2006) to their far eastern extremity. They enter into the 

study area along HKH and eventually subside over the continental India (Hasson et al., 2014a). 

On the other hand, the South and Southeast Asian monsoon along with the East Asian monsoon 
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are interrelated components of the Asian monsoon system (Janowiak and Xie, 2003). The 

monsoon is a thermally driven system in which a large-scale meridional thermal gradient 

between the land and the ocean (Li and Yanai, 1996; Fasullo and Webster, 2003; Chou, 2003) is 

formed both, at the surface - due to intense seasonal solar heating over the land and its low heat 

capacity - and at the mid-to-upper troposphere - due to the HKH and TP causing sensible heating 

aloft forming the Tibetan warm anticyclone (Böhner, 2006; Clift and Plumb, 2008) - in late-

spring that result in a north–south pressure gradient, which induces the cross-equatorial surface 

flow and heralds the monsoonal onset (Li and Yanai, 1996; Fasullo and Webster, 2003). The 

study basins of the Indus, Ganges and Brahmaputra are under the dominant influence of the 

south Asian summer monsoon precipitation regime (MPR), however, the Mekong basin receives 

its precipitation from both south Asian and southeast Asian components of the Asian monsoon 

system (Hasson et al., 2013). Over the study domain, the monsoon onset starts over the southern 

India and advances towards the southern China and subsequently to northwestern India and 

Pakistan (Matsumoto, 1997; Janowiak and Xie, 2003; Hasson et al., 2013 and 2014a). Hence, the 

monsoon onset starts over the Mekong and Brahmaputra basins in mid-to-late-May and tracks 

over the Ganges and Indus basins till June to July. The monsoon retreat, referring back to dry 

and dormant conditions, goes roughly in a reverse order, latest by October (Goswami, 1998). The 

sudden breaks during the active monsoon period (Ramaswamy, 1962; Miehe, 1990; Böhner, 

2006), spanning over few days to several weeks (Turner and Annamalai, 2012), can seriously 

threat the water availability (Webster et al., 1998), and food production, particularly for the areas 

of rainfed agriculture (Subbiah, 2002; Gadgil and Gadgil, 2006), such as parts of the west India 

and Pakistan (Wani et al., 2009). These areas are also quite sensitive to the delays in the 

monsoon onset. Given that importance, an adequate model representation of the various local 

scale physio-geographical features and physical processes that are influential to the diversified 

aspects of the precipitation regimes associated with the prevailing large scale circulations, 

particularly the monsoon, are yet a great challenge for the climate science and modeling 

community.  

 

 

1.2 Performance of Climate Models  

 

As compared to their CMIP3 predecessors (Meehl et al., 2007), the climate models included in 

the 5
th

 phase of the Coupled Model Intercomparison Project (CMIP5 - Taylor et al., 2012; 

Guilyardi et al., 2013) have gone through an extensive development, introducing higher 

horizontal and vertical resolutions, improved interactions between atmosphere, land use and 

vegetation components, interactive and indirect aerosols treatments and inclusion of a carbon 

cycle etc. (Taylor et al., 2012). The CMIP5 models show typically some improvements relative 

to the CMIP3 models in their ability to represent the climate system (Knutti and Sedláček, 2013; 

Knutti, 2013; Geil et al., 2013; Liu et al., 2014). However, despite improvements in the spatial 

resolution, the current generation of climate models still misrepresent substantially the real 

topography of the HKH and TP (Chakraborty et al., 2002 and 2006; Boos and Hurley, 2013) akin 

their predecessors. Moreover, the region features such a substantial irrigation activity throughout 

the year that significantly impacts the regional atmospheric circulation and plays an important 

role in determining the strength and spatial extent of concurrent and subsequent monsoonal 

precipitations (Saeed et al., 2009 and 2013; Levine and Turner 2012; Marathayil et al., 2013; 

Levine et al., 2013). However, there is no representation of irrigation in the CMIP5 models. This 



ACCEPTED MANUSCRIPT

5 
 

has negative impacts on the possibility of achieving a realistic simulation of the precipitation 

regimes over the region, particularly of that associated with the summer monsoon.  

 

As a result of such deficiencies, the CMIP5 models (just as their CMIP3 predecessors) feature 

commonly relevant systematic errors in the simulated precipitation patterns, such as delayed 

monsoon onset over India, inadequate simulation of seasonal cycle (Kripalani et al., 2007; 

Kumar et al., 2011; Sperber et al., 2013; Sperber and Annamalai, 2014; Hasson et al., 2014a), 

underestimation of monsoonal precipitation and offset in the positions and intensities of its 

maxima (Wang et al., 2004; Annamalai et al., 2007; Christensen et al., 2007; Lin et al., 2008; 

Sperber et al., 2013), rising trend of the monsoonal precipitation contrary to the observed falling 

trend (Wang et al., 2004; Ramanathan et al., 2005; Sabeerali et al., 2014; Saha et al., 2014), cold 

sea surface temperature (SST) biases over the northern Arabian Sea (Levine et al., 2013; 

Sandeep and Ajayamohan, 2014), and the suppression of the monsoon far north over China and 

far west over Pakistan.  

 

Despite of the above mentioned shortcomings, the CMIP5 models are successful in capturing 

some of the key features over the region with a high inter-model agreement. For instance, 

Sperber et al., (2013) have reported high fidelity of the CMIP5 models - and of their CMIP3 

predecessors - in simulating the mean monsoonal winds. Further, some studies (Menon et al., 

2013; Sandeep and Ajayamohan, 2014) have shown that the coupled climate models are able to 

realistically simulate the recently observed northward shift of the low-level monsoonal jet, which 

is consistent with the future projected increase in the monsoonal extent (Kitoh et al., 2013; Lee 

and Wang, 2014) and overall widening of the tropical zone (Fu 2006; Seidel and Randel, 2007). 

Hasson et al. (2014a) have reported a satisfactory representation of the change in the western 

mid-latitude precipitation regime under climate change over the region by the CMIP3 models, 

featuring a qualitative agreement for the poleward shift of mid-latitude storm tracks as 

documented by various studies (Bengtsson et al., 2006; Fu, 2006; Fu and Lin, 2011). Such 

capabilities of models - despite their structural limitations and incomplete representation of 

various features - provide some confidence on their projected changes.  

 

Relative to the CMIP3 exercise, the CMIP5 models show an improvement regarding the time-

mean precipitation through better simulating its maxima over the region of steep topography 

(Sperber et al., 2013), which may be linked to their relatively fine resolutions (Rajendran et al., 

2013). Additionally, CMIP5 models seem to be more coherent regarding the climate change 

signal. For instance, future increase in the south Asian summer monsoon precipitation as 

projected by the CMIP3 models (Ashrit et al., 2003; Meehl and Arblaster, 2003; Ashrit et al., 

2005; Hasson et al., 2014a) are still very uncertain due to a relatively larger inter-model spread 

(Meehl et al., 2007; Turner and Slingo, 2009; Kumar et al., 2011; Turner and Annamalai, 2012; 

Hasson et al., 2014a), which is related to the diversity in their spatial resolution (Kim et al., 

2008) and in the adopted convection schemes (Turner and Slingo, 2009; Bollasina and Ming, 

2012). Contrary to this, the CMIP5 models feature a high agreement on the intensification of the 

summer monsoon precipitation (Kitoh et al., 2013; Menon et al., 2013; Wang et al., 2013; Lee 

and Wang, 2014) in future.  

 

Most of the studies on the seasonal cycle of precipitation over south Asia focus only on MPR 

and adopt various threshold-based techniques to investigate fidelity of the climate models in 
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representing, e.g., timing of the monsoon onset, retreat and maxima (e.g. Sperber et al., 2013; 

Sperber and Annamalai 2014; Hasson et al., 2014a). Since the westerly disturbances 

intermittently transport moisture to the region (Syed et al., 2006; Hasson et al., 2014a), such 

metrics are not equally applicable for the westerly precipitation regime (WPR). Moreover, an 

absolute threshold of 5 mm day
-1

 is commonly used to identify the monsoon onset and retreat 

(Wang and LinHo, 2002; Sperber et al., 2013), which in view of the large inter-model 

discrepancies does not seem appropriate for testing models performances, especially when large 

biases in the seasonal cycle of precipitation are present (Geil et al., 2013). Namely, a dry (wet) 

bias may lead to a delayed (early) timing of the onset relative to the observations. Some of the 

dry models even cannot achieve the absolute threshold, particularly over the arid regions and 

areas of far reaches of the monsoon where amplitude of the simulated precipitation can be very 

small, such as, over the Indus Basin (Hasson et al., 2013 and 2014a). Therefore, in order to 

define the monsoon onset and retreat from a large inter-model “wetness” scatter the use of a 

relative threshold has been encouraged (Geil et al., 2013; Hasson et al. 2014a; Sperber and 

Annamalai, 2014). Analyzing the CMIP3 models, Hasson et al. (2014a) have uniformly applied a 

relative threshold of 0.17 over the normalized basin-integrated monthly precipitation of the 

Indus, Ganges, Brahmaputra and Mekong basins. Such use of a relative rather than an absolute 

criterion for defining the monsoon onset has considerably reduced the effect of a large CMIP3 

inter-model spread. Sperber and Annamalai (2014) have also applied a relative threshold of 0.2 

over the fractional accumulated pentad (5-day mean) precipitation from the CMIP5 models. 

Though use of a relative threshold together with the adopted data processing approach 

circumvents the effect of a large inter-model scatter on the analysis (Hasson et al., 2014a; 

Sperber and Annamalai, 2014), but again, uniformly applying a relative threshold over the whole 

study domain may face difficulties because of the spatial heterogeneity of the precipitation 

regimes and/or the temporal data resolution used in the analysis.  

 

1.3 This Paper 

 

The goal of this review is to provide a comprehensive analysis of the performance of CMIP5 

models in representing the seasonal cycle of precipitation and assessing their robust projected 

changes in response to changing climate conditions over the major river basins of South and 

Southeast Asia, namely, Indus, Ganges, Brahmaputra and Mekong. Unlike previous studies, 

which assess models’ realism either at the grid-point or at the regional scale (Annamalai et al., 

2007; Fan et al., 2012; Turner and Annamalai, 2012; Sperber et al., 2013; Menon et al., 2013), 

the focus of this study is on a river basin scale (Lucarini et al., 2008; Lucarini and Ragone, 2011; 

Hasson et al., 2013, 2014a; Lutz et al., 2016). A river basin is a natural unit of practical water 

resource management that is also quite relevant for impact assessment studies and can support 

for taking effective adaptive measures. First, we assess models’ performance for the time-

dependent characteristics of MPR, which are relevant for the management of water resources and 

for the food security in the region. In this regard, we choose the timing of the onset and retreat 

and the rate of precipitation concentration during the wet season as skill metrics (monsoonal 

metrics) for a twofold reason: 1) these are stringent tests for assessing the model performance 

and; 2) these are most commonly employed by various model performance assessment studies, 

so that our results from the latest generation climate models are comparable (e.g. Hasson et al., 

2014a; Sperber and Annamalai, 2014). In order to circumvent a large inter-model scatter of the 

CMIP5 models, we perform a relative threshold based assessment of model performance over 
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each basin based on the fractional accumulated precipitation (Sperber and Annamalai, 2014). 

First, we identify a unique set of relative thresholds for each basin from the observational dataset 

used in the study that yields right timings of the monsoon onset and retreat for the respective 

basin. Then, we apply these thresholds to the model datasets in order to investigate their skill for 

the select metrics and to assess their projected future changes and associated uncertainties. Such 

basin-scale evolution of monsoon only precipitation regime is, however, limited to the active 

monsoon duration (onset-retreat) and highly sensitive to its accurate identification.  

 

Therefore, we additionally apply a novel and threshold-independent metrics over both MPR and 

WPR in order to distinctly characterize their overall seasonality over the study basins as well as 

over the spatial domain of South and Southeast Asia (Fig. 1). Such technique combines the use 

of mean precipitation (P) and recently introduced dimensionless seasonality index (SI). The SI, 

accounting for the spatio-temporal heterogeneity of precipitation distribution, identifies the high-

seasonality hotspots. The SI for a considered time period is determined by multiplicatively 

combining P normalized by its spatial maximum and the relative entropy (RE) – an information 

theory-based quantitative measure of the “distance” between the statistics of precipitation against 

the uniform distribution in time. The index was first employed by Feng et al. (2013) using 

monthly observations for the tropical land regions and then by Pascale et al. (2014 and 2015) 

over the monthly precipitation from the CMIP5 models for the whole globe.  

 

Since changes in the time behavior of the south Asian monsoon precipitation regime are not 

resolved at monthly scale (Hasson et al., 2014a), we investigate both monsoonal metrics and 

seasonality indicators on pentad precipitation datasets. We describe the biases of the CMIP5 

models for all the chosen metrics against the observations during the historical period (1961-

2000). This provides useful information for the climate modelers - to improve the climate models 

- and to the practitioners and agencies working with the limited area models in the region, as 

biases of individual models are made clear. Biases in the climate models are estimated against 

two widely used multi-source satellite-merged gridded observational dataset, namely, the Global 

Precipitation Climatology Project (GPCP, Xie et al., 2003) and the Climate Prediction Center 

Merged Analysis of Precipitation (CMAP, Xie and Arkin 1997a). In view of the analyzed model 

skills, we present only qualitative changes in the select metrics as projected by the end of the 

century (2061-2100) under an extreme representative concentration pathway (RCP) RCP8.5. The 

RCP8.5 scenario, referring to highest GHG emissions due to burgeoning population, slow 

income growth, modest technological development, higher energy demands and absence of 

climate change policies (Riahi et al., 2011), provides an upper bound to climate change, and 

constitutes a plausible worst-case-scenario, so studying it is important for bracketing the future 

possible impacts of climate change in the hydro-climatology of the region. 

 

The paper is organized as follows. In section 2, we briefly describe the data used in the study and 

the methodology adopted for the analysis. Section 3 presents the model performance and their 

projected changes for the chosen metrics. In section 4, we discuss in detail the findings from the 

present study in relation with the available literature and summarize the main results. 

 

 

2   Data and methods 
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It is indeed nontrivial to reconstruct the statistics of gridded datasets of precipitation in South and 

Southeast Asia (Collins et al., 2013). The main problems come from the observational 

uncertainty typically associated to: 1) an uneven density and temporal coverage of in-situ 

observatories; 2) performance of the applied interpolation techniques and; 3) difficulties in snow 

detection over the complex HKH and Tibetan Plateau terrain (Fekete et al., 2004; Yatagai et al., 

2012; Palazzi et al., 2013; Prakash et al., 2014; Hasson et al., 2014a; Hasson et al., 2016). 

Therefore, we have decided to use multi-source satellite-merged observations for our analysis. 

We have used the pentad precipitation from the GPCP (Xie et al., 2003) and CMAP (Xie and 

Arkin 1997a) datasets for the period 1979-2004 that were available at 2.5
o
x2.5

o
 horizontal grid 

resolution. The GPCP precipitation was obtained through merging microwave and infrared based 

observations with in-situ rain gauge data, while the CMAP precipitation was obtained through 

merging the microwave, infrared and outgoing long-wave radiation based observations with the 

NCEP-NCAR reanalysis dataset (Huffman et al., 1997 and 2009; Xie and Arkin, 1997b). 

Various studies have used the GPCP and CMAP datasets for the global (Martin and Levine, 

2012; Kitoh et al. 2013; Chou et al. 2013; Frierson et al. 2013; Ramesh and Goswami, 2014) and 

regional (Bolvin et al., 2009; Cook and Seager 2013; Sperber et al. 2013) scale analysis of the 

hydrological cycle. Sperber and Annamalai (2014) have also shown that the two datasets show 

little differences in terms of time dependent properties of the seasonal cycle of precipitation over 

the south Asian summer monsoon domain. Xie et al. (2003) have documented the development 

of pentad GPCP dataset and discussed its differences relative to the CMAP observations.  

 

As of the model simulations, daily precipitation data were obtained from the CMIP5 data for the 

historical period (1961–2000) and for the future projections (2061–2100) obtained under the 

RCP8.5 global warming scenario  (Table 1). The RCP8.5 assumes that the radiative forcing will 

ramp up to 8.5 Wm
-2

 by the year 2100 and can be considered as an upper end of the climate 

forcing scenarios adopted by the IPCC. Further details about the RCPs can be found in Moss et 

al. (2010) and van Vuuren et al. (2011). The requisite data was available from thirty coupled 

climate and Earth System Models (ESMs) that provide several ensemble members for each 

simulated scenario. We have chosen only first realization from each model as Coleman et al. 

(2011) and Pascale et al. (2014 and 2015) have reported robustness among the several ensemble 

members of an individual model. 

 

2.1 Metrics 

 

For the monsoonal metrics, we have first calculated the time series of basin-integrated pentad 

precipitation from each considered dataset for the four study basins. For each year and for each 

pentad, the basin-integrated precipitation was calculated through first weighing the pentad 

precipitation at each grid cell by the fraction of its area lying within the natural boundary of a 

basin and then area-averaging over the basin area:  

 

 〈𝑝〉𝑖,𝑘 =
1

𝐴
∫ 𝑝𝑖,𝑘dA

𝐴
               Eqn. 1 

 

where 𝑝𝑖,𝑘 is the mean precipitation at pentad i and year k at a certain grid point, 𝐴 is the basin 

area and 〈𝑝〉𝑖,𝑘 is the basin-averaged precipitation at the same time. Further details about the 

procedure for performing spatial integration over a given river basin can be found in Lucarini et 
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al. (2008) and Hasson et al. (2013 and 2014a). We have then constructed for each period the 

accumulated precipitation Π𝑡 at pentad t as: 

 

Π𝑡 = ∑ 〈𝑝〉𝑖
𝑡
𝑖=1  .       Eqn. 2 

 

From the accumulated precipitation Π𝑡, we have estimated the fractional accumulated 

precipitation, Π̃𝑡 as: 

 

Π̃𝑡 =  Π𝑡/ Π73        Eqn. 3 

 

where 𝑡 = 1,2,3, … ,73 denotes each pentad of the year, as models with Gregorian and 360 days 

calendar were adjusted to 365-day calendar. We plot seasonal cycles of Π𝑡 from all datasets in 

Figure 3 to show the inter-model scatter of the simulated precipitation, multi-model mean 

(MMM) and observations for each basin. Note that the use of normalized quantities like Π̃𝑡, as a 

model intercomparison metric, is rather advantageous because it allows for neglecting the 

(sometimes large) differences in the mean precipitation rate.  

 

Based on Π̃𝑡 of the climatological GPCP dataset plotted in Figure 4, a relative threshold for 

identifying the basin-wide observed timings of the monsoon onset (retreat) is taken as the 

fractional accumulation at the pentad, t, which qualifies two criteria: 1) the rapid fractional 

accumulation (RFA), referring to the linear growth, starts (ends) immediately after (before) such 

a pentad, t, and; 2) the pentad, t, coincides with the observed climatological onset (retreat) 

isochrones around the center of the respective basins. Putting an example for the Indus basin 

onset, if the RFA in Figure 4 apparently starts after the pentad 37 that represents the date of July 

04, then the observed climatological onset date as suggested by the isochrones over the middle of 

the Indus basin should also be around July 04. If so, fractional accumulation at the pentad 37 is 

chosen as a relative threshold for identifying the observed timing of the monsoon onset over the 

Indus, otherwise, the previous pentad of Π̃𝑡 has to be tested for the given criteria. The isochrones 

are lines spatially indicating progression of the monsoonal onset/retreat dates. We have mainly 

considered the observed climatological isochrones from Janowiak and Xie (2003) defined based 

on the GPCP dataset for the period 1979-1999, and additionally, as defined by the Indian 

Meteorological Department based on the long term station observations (Krishnamurti et al., 

2012). The identified relative thresholds, suggesting the real timings of the monsoon 

onset/retreat, were then applied to all datasets on yearly basis and climatological means were 

obtained for the historical (1961-2000) and future (2061-2100) periods. The RFA has been 

estimated as the average linear slope from the onset to retreat pentads (onward called RFA slope) 

as: 

 
𝑅𝐹𝐴 𝑆𝑙𝑜𝑝𝑒=𝑆= (Π̃𝑟𝑒𝑡−Π̃𝑜𝑛)/𝑁      Eqn. 4 

 

where 𝑁 refers to the total number of pentads during the active monsoon duration. The RFA 

slope tells how fast the precipitation accumulates within the active monsoon period (Fig. 5). In 

other words, it provides a measure of the concentration of precipitation within the active 

monsoon duration. We have estimated the models’ offsets for the historical period against the 

observations and assessed the projected changes for the future period with respect to the 

historical period, along with their statistical significance using a Students’ T-test (Welch, 1938). 
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Since the study area undergoes the influence of two large-scale circulation modes, the summer 

monsoon and westerly disturbances, some regions feature bimodal precipitation regime, yielding 

substantial amounts of water in distinct periods of the year (Hasson et al., 2014a). The central 

and eastern parts of the region receive water almost exclusively in summer, during the monsoon 

(MPR). In addition to the monsoonal precipitation, the western part of the study area receives 

water during winter and spring seasons (Rees and Collins, 2006; Hasson et al., 2013 and 2014a) 

as a result of the synoptic disturbances from the southern flank of the jet (WPR). In order to 

study separately the MPR and WPR, we have roughly divided the hydrological year into 

monsoon and “westerly” seasons, based on our results from the fractional accumulation analysis. 

We refer the period May to October as the MPR (36 pentads), while the rest of hydrological year 

(November to April) is taken as WPR, comprising of 37 pentads (See Fig. 2). 

 

Since the models performance in our above mentioned analysis highly depends upon the 

accuracy of the chosen relative thresholds, and thus on the adequate identification of the active 

monsoon duration, we have additionally employed threshold-independent seasonality index (SI) 

(Feng et al., 2013; Pascale et al., 2014 and 2015), which accounting for the spatio-temporal 

distribution of precipitation, provides a measure of the overall seasonality of precipitation 

regime. The SI is given by the product of the precipitation P (normalized, for convenience, by its 

spatial maximum) times the relative entropy RE – an information theory based quantitative 

measure of the degree of concentration of the precipitation, measuring the “distance” from the 

uniform distribution.  

 

Let’s define these quantities. Considering a grid cell x in our domain and a specific time range of 

WPR, MPR and annual precipitation regime comprising of t pentads, let us define 𝜋 as the 

precipitation fraction of the pentad i: 

 

𝜋𝑖,𝑥 =  𝑝𝑖,𝑥/𝑃𝑥   where i = 1…t  and  Px=∑ 𝑝𝑖,𝑥
𝑡
𝑖=1    Eqn. 5  

 

from which the relative entropy (RE) is computed as:  

 

𝑅𝐸𝑡,𝑥 = ∑  𝜋𝑖,𝑥 𝑙𝑜𝑔2
𝑡
𝑖=1 (𝑡 𝜋𝑖,𝑥)     Eqn. 6 

 

where t is 73 for the hydrological year, 36 for the monsoon season and 37 for the cold season. 

Note that when applying the RE indicator to the MPR or WPR, we are indeed looking at the 

subseasonal variability of precipitation. 

 

The RE is maximum (= 𝑙𝑜𝑔2 𝑡) when the precipitation is concentrated in a single pentad, and 

zero when the precipitation is uniformly distributed among the pentads (𝜋𝑖 = 1/𝑡, 𝑖 = 1 … 𝑡) 

within the considered time duration. Change in RE, therefore, refers to the effective dryness or 

wetness of the pentads within the considered time period. The RE changes, purely caused by the 

transformation of pentads from wet to completely dry and vice versa, can also be related to 

changes in the length of dry/wet season in the case of MPR. The RE is related to number of dry 

days, �̃� (Pascale et al., 2014): 

 

�̃� = 5𝑡(1 − 2−𝑅𝐸)       Eqn.7 
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where t refers to the number of pentads (hence the factor 5) in a considered precipitation regime. 

Here, an increase (decrease) in RE estimates corresponds well to the increase in number of dry 

(wet) days. Moreover, SI of WPR when dominated by RE estimates need to be interpreted better 

as an indicator of erratic behavior. Based on estimates of RE and P, SI for all considered time 

periods is obtained as Eqn. 8. 

 

𝑆𝐼𝑥,𝑡 = 𝑅𝐸𝑥,𝑡
𝑃𝑥,𝑡

𝑃0
        Eqn. 8 

 

Here 𝑃0 is a constant scaling factor and it is taken as the maximum of 𝑃𝑥,𝑡 within the considered 

time period, t of the observed datasets GPCP/CMAP (Feng et al., 2013).  The estimate of SI is 

zero if either RE or Px,t is zero (uniform precipitation, including the case of total dryness) and 

reaches its maximum value when RE estimate for the year of 𝑃0 approaches maximum (𝑙𝑜𝑔2 𝑡).  

 

The SI index provides a measure of seasonality by considering the spatial heterogeneity of the 

precipitation distribution. For instance, over the Thar Desert (on the southern portion of the 

Pakistan-India border), SI will be low despite of the erratic behavior of its precipitation and 

prolonged dry season (highest RE) because the incident precipitation is extremely low. On the 

other hand, regions under year round precipitation regime (low RE) such as eastern Tibet can 

still feature high SI because total precipitation input is high. Details of the seasonality indices 

and their calculation are given in Feng et al. (2013) and Pascale et al. (2014 and 2015). In order 

to consistently estimate RE and SI, we have remapped all model datasets to the common GPCP 

and CMAP grid resolution of 2.5
o 

x 2.5
o
 using a bilinear interpolation. We have calculated the 

yearly estimates of seasonality indicators (P, RE, SI) from the gridded pentad precipitation, 

integrated them over the study basins (Eqn. 1) and obtained their climatological means for the 

historical (1961-2000) and future (2061-2100) periods.  

 

It is worth mentioning that in the rest of the paper we do not perform bias reduction/correction of 

the data, in order to have the ability to fully appreciate the models' discrepancies. Furthermore, 

our presented results are mainly relative to the GPCP dataset as it performs relatively better than 

the CMAP dataset in terms of the monsoonal precipitation (Prakash et al., 2014). In fact most of 

the available observations feature certain limitations in the rainfall estimation over the 

mountainous massifs, along the Himalayan foothills and over the northeast India (Prakash et al., 

2014). Thus, we suggest that our results should be interpreted in the context of a larger spectrum 

of observational uncertainty featured by both the observational datasets considered here, and 

those discussed elsewhere (e.g. Collins et al., 2013; Prakash et al., 2014). 

 

 

3   Results 

 

3.1 Monsoon onset, duration and RFA slope (1961-2000) 

 

The GPCP dataset agrees well with the CMAP observations for the climatology of the seasonal 

cycle of basin-integrated P over the study basins (Fig. 2 and 3). Instead, models exhibit diverse 

skills, featuring a large inter-model spread and deviation from the observations. It is clear from 

the Figure 3 that models perform well over the Mekong basin in absolute term while models 
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overestimate P for the Brahmaputra basin and show both overestimation/underestimation of P for 

the Indus and Ganges basins. The Π 𝑡 plotted in Figure 3 for the Indus basin clearly shows that 

some models do not adequately simulate the MPR (no sharp growth between pentads 37-52). In 

Figure 4, we show that Π̃ eliminates the inter-model scatter of P (shown in Figs. 2 and 3) and that 

in relative terms models reasonably simulate the seasonal cycles for the Mekong, Brahmaputra 

and Ganges basin, which are dominated by the MPR. Here, a sharp growth in Π̃𝑡 shown in Figure 

4 refers to the active monsoon duration that spans over 26-62, 28-57, 32-55 and 37-52 pentads, 

for the Mekong, Brahmaputra, Ganges and Indus basins, respectively. Interestingly, we note that 

models for the Indus basin feature serious discrepancies and are generally biased wet for the 

WPR but dry for the MPR as compared to the considered observations. For instance, the ratio of 

observed accumulated precipitation during the monsoon period and during the rest of the year is 

around 1.46, while the models’ figures range between 0.18-1.34, with only six models that 

feature such ratio above unity. In Figure 5, we plot the estimated RFA slope against the 

identified monsoon onset pentads from all datasets, which summarizes the skill of the individual 

models and of MMM for all basins, against the observations.  

  

As discussed, the Indus basin features a bimodal precipitation distribution because of the 

contributions of the westerly disturbances and summer monsoon system (Syed et al., 2006; Ali et 

al., 2009; Palazzi et al., 2013; Hasson et al., 2014a). We note that most of the models during such 

period (pentads 1-36) overestimate Π̃ against the GPCP/CMAP observations. For the monsoon 

season, we have found fractional accumulation of 0.15 and 0.9 as relative thresholds from the 

GPCP that identify right timings of the monsoon onset and withdrawal, respectively, against the 

“middle of the basin” observed isochrones (see Fig. 4). Thus, the monsoon duration spans over 

the pentads from 37 to 52 comprising a total of 16 pentads (Fig. 4). During such period, the 

GPCP data set suggests a highest RFA slope of 0.048 for the basin, indicating shortest active 

monsoon duration among all study basins. In order to eliminate the effect of WPR while 

analyzing the monsoonal properties, here, we consider only pentads from 31-73. The difference 

between the CMAP and GPCP datasets in terms of their suggested climatic properties of the 

onset, duration and RFA slope for the basin is statistically insignificant. The MMM suggests a 

realistic timing of the monsoon onset, it prolongs the monsoon duration by 10 pentads and, thus, 

underestimates the RFA slope by 45% (Table 2). Eight models (CanESM2, CESM1-CAM5, 

CSIRO-Mk3-6-0, IPSL-CMA-MR, MIROC5, MPI-ESM-LR and MRI models) suggest realistic 

timings of the onset (Fig. 5). The rest of models generally suggest a delayed onset by 3-8 

pentads, except the MIROC-ESM, MIROC-ESM-CHEM and models from the MOHC. 

Irrespective of the models’ skill regarding the onset, all models suggest an unrealistically long 

duration of monsoon by 5-15 pentads with respect to observations. We note that such prolonged 

duration of the monsoon is one-to-one with the underestimation of the RFA slope for the basin 

(see Fig.5 and Table 2). Interestingly, in one-third of the models (bcc-csm1-1, IPSL-CMA-LR, 

IPSL-CMB-LR, CSIRO-Mk3-6-0, FGOALS-g2, INMCM4 and models from CMCC and MRI) 

MPR is almost absent over the basin. Two other models (EC-EARTH and BNU-ESM) show an 

unrealistic seasonal cycle of precipitation.  

 

For the Ganges Basin, the relative thresholds that suggest the real timings of monsoon onset and 

withdrawal, verified against the observed “middle of the basin” isochrones, are 0.15 and 0.95 

fractional accumulations, respectively. The observed climatic monsoon onset starts at the pentad 

32 while active duration of the monsoon spans over 25 pentads. The RFA slope is estimated to 
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be 0.036. We note that two models (IPSL-CMB-LR and EC-EARTH) simulate overall an 

unrealistic seasonal cycle of P for the basin. These models along with seven other models (bcc-

csm1-1, FGOALS-g2, IPSL-CMB-LR and models from MOHC and MRI) achieve quite early 

the onset threshold (before pentad 26) but their rapid accumulation starts quite later (Fig. 5, 

Table 2). This may be attributed to the unrealistic pre-monsoonal P or to the prolonged WPR 

simulated by these models. Such a systematic wrong onset influence the MMM, which also 

suggests an unrealistically early onset, with a bias of four pentads. Most of the models 

suggesting an unrealistically early onset mainly overestimate the observed duration of the 

monsoon and substantially underestimate the rapid accumulation during such period. From the 

rest, 17 models (BNU-ESM, CanESM2, CMCC-CMS, CMCC-CM, CNRM-CM5, CSIRO-Mk3-

6-0, INMCM4, IPSL-CMA-MR, NorESM1-M and models from MPI, MIROC, NCAR and NSF-

DOE-NCAR) suggest right timings of the onset. Only models from NOAA-GFDL suggest a 

statistically significant delay in the onset timing by 2-4 pentads. Six models (CESM1-CAM5, 

GFDL-ESM2G and GFDL-ESM2M, MIROC5 and models from MPI) suggest realistic duration 

of the monsoon.  

 

For the Brahmaputra basin, the pentads suggesting right timings of the monsoon onset and 

withdrawal in GPCP dataset against the observed “middle of the basin” isochrones, are those 

featuring fractional accumulation of 0.18 and 0.95, respectively. The active monsoon regime 

starts at pentad 29 and ends at pentad 57, spanning over 28 pentads in total. The RFA slope is 

about 0.030, which is higher than the Mekong basin but lower than the Ganges and Indus basins. 

The CMAP dataset suggests an early onset by one pentad and a prolonged duration by 2 pentads 

while it underestimates the RFA slope by 5% against the GPCP dataset. In view of the 

observational uncertainty, half of the models suggest realistic timings of the onset (See Table 2). 

Two models (BNU-ESM and NorESM1-M) suggest an onset delayed by 2 pentads, while the 

rest of 13 models suggest early onset by 2-11 pentads. Two models (EC-EARTH and IPSL-

CMB-LR) perform worst in terms of all monsoonal metrics. For the RFA slope, only two models 

(MPI-ESM-MR and CSIRO-Mk3-6-0) agree with the observations while all the rest of models 

underestimate it (Fig. 5 and Table 2). Such models also simulate extended monsoon duration, as 

the RFA slope is highly negatively correlated to the monsoon duration. The MMM suggests an 

early onset by 2 pentads and a duration prolonged by 7 pentads while the RFA slope is 

underestimated by 16% as compared to the GPCP dataset. An early onset suggested by the 

MMM is mainly influenced by two models (EC-EARTH and IPSL-CMB-LR) performing worst 

in terms of the onset timings (Fig. 5). 

 

The Mekong basin features a gentle RFA slope (0.025), an early onset (at pentad 26) and 

extended active monsoon duration (36 pentads) among all study basins. The fractional 

accumulation of 0.11 and 0.95 suggest pentads of the real monsoon onset and withdrawal around 

the “middle of the basin”. The difference between CMAP and GPCP datasets in terms of the 

chosen metrics is insignificant. The MMM also suggests a realistic timing of the onset and 

duration while it overestimates the RFA slope by only 5%. Only seven models (bcc-csm1-1, 

BNU-ESM, CMCC-CESM, CMCC-CMS, FGOALS-g2, GFDL-ESM-2G, NorESM1-M and 

MPI models) suggest realistic timings of the onset. Thirteen models suggest the onset timing 

delayed while nine models suggest it earlier by 1-4 pentads (Fig. 5 and Table 2). Surprisingly, 

EC-EARTH model suggests timing of the onset earlier by 20 pentads. Such a model performs 

consistently worst for all metrics over the Mekong and over all other study basins. Ten models 
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suggest a realistic duration of the monsoon suggesting either smallest or no difference in their 

estimated RFA slopes against the GPCP observation. Thirteen models suggest the monsoon 

duration shortened by 2-7 pentads while only five models suggest it extended by 2-8 pentads. 

Note that Mekong is the only study basin for which the monsoon duration is simulated 

significantly shorter than the observed by almost half of the models, mainly because of delayed 

onset (Fig. 5). 

 

3.2 Mean precipitation, relative entropy, and seasonality index (1961-2000) 

 

In addition to presenting basin-integrated estimates of seasonality indicators (Table 3), we 

discuss in detail the local scale biases from the individual models for such indicators. Here, we 

show estimates of P, RE and SI (Figs. 6a-c, respectively) for the GPCP and CMAP observational 

datasets and for the MMM (top to bottom rows, respectively) for WPR, MPR and annual 

precipitation regimes (left to right columns, respectively). Figures showing biases and 

projections from the individual models are given in the supplementary material. Table 4 

summarizes the root mean square error (RMSE), pattern correlation (PC) and standard deviation 

(σ) of P, RE and SI calculated over the whole spatial domain (as in Fig. 1), for the observations, 

MMM and for all individual models within WPR and MPR. We remind here that RE estimates 

for WPR are more appropriate to be interpreted as number of dry/wet days due to the fact that 

westerly P is received over the region from number of intermittent events. Thus, for such areas, 

we interpret SI as an indicator of intermittency or erratic behavior.  

 

Westerly Precipitation Regime 

 

For all study basins, most of the models suggest higher values of SI during WPR as compared to 

the observations. This is generally associated with overestimation of P, irrespective of the fact 

that number of dry days (RE estimates) is overestimated (underestimated) in the Indus and 

Ganges (Brahmaputra and Mekong) basins with respect to the observations.  

 

Looking at spatial variability of these estimators, one finds that the biases in the P, RE and SI are 

not uniform among the individual models (See supplements). As of P, most of the models 

considerably overestimate it over the HKH region, with the exception of eight models (EC-

EARTH, CSIRO-Mk3-6-0, GFDL-ESM2M, GFDL-ESM2G, MRI-CGCM3, CanESM2, IPSL-

CMA-MR and CMCC-CESM). Models from the MIROC, NCAR and NSF-DOE-NCAR, along 

with five models (FGOALS-g2, bcc-csm1-1, BNU-ESM, EC-EARTH and NorESM1-M) slightly 

overestimate P over India, where the rest of models slightly underestimate it. Most of the models 

underestimate P over southern Pakistan (lower Indus Basin). The estimates of RE are 

substantially higher than observed over most of Pakistan, India, Myanmar and Thailand by the 

products of the CMCC, MRI, MPI, IPSL, and NOAA-GFDL modeling groups, suggesting higher 

number of dry days within WPR with respect to the GPCP observations. The rest of models 

mostly show lower than observed RE over southern India and Tibetan Plateau, implying higher 

number of wet days within WPR therein. Positive biases in SI are observed over most of the 

target region by almost all models, and particularly over the HKH ranges. Thus, the MMM also 

provides value for SI larger than observations over the HKH ranges, Tibetan Plateau and eastern 

China regions, due to overestimation of P. The GPCP, CMAP and MMM agree well on the 

extremely high estimates of RE over the Thar Desert and over the adjacent (very dry) areas of 
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Pakistan and India, suggesting minimum number of wet days therein. In contrast, MMM 

overestimates the observed number of wet days over the Myanmar coast and Taklimakan Desert 

(north of the Tibetan Plateau), where low values of RE (dry days) are found. Over the 

Brahmaputra region, medium level estimates of P, RE and SI are observed. Fig. 6a clearly shows 

that northern Pakistan (northern Indus basin) and Brahmaputra basins receive considerable P 

under westerly disturbances. 

  

Monsoonal Precipitation Regime 

 

For the study basins, more than half of the models have a positive (negative) bias for RE for the 

Indus and Ganges (Brahmaputra and Mekong) basins. However, in contrast to WPR, models 

feature negative (positive) bias for the SI for the Indus and Mekong (Ganges and Brahmaputra) 

basins, mainly due to the underestimation (overestimation) of P.  

 

We now focus on the spatial variability of the indicators. The GPCP dataset features high 

estimates of P over the Western Ghats of India, northern India (Ganges Basin), Bangladesh (and 

the whole Brahmaputra Basin), Myanmar, and over the Mekong Basin. The CMAP dataset 

agrees well with the GPCP dataset in terms of spatial correlation (PC=0.85), whereas the RMSE 

is around 300mm. Such difference is mainly due to the higher P over the Bay of Bengal in the 

CMAP dataset and over Myanmar and Brahmaputra Basin in the GPCP dataset relative to each 

other. Both observational datasets suggest a negligible P over the southern Pakistan (lower Indus 

Basin region), the western Tibetan Plateau and over the Karakoram Range. In contrast, MMM 

underestimates P over the northwestern India while it hardly sees any precipitation over the 

Indus basin. Such systematic biases mainly arise due to well-known inability of most of the 

models in fetching the monsoonal system far to its western extremity. Similarly, MMM 

overestimates P over the eastern parts of the Himalayas and Tibetan Plateau region. Besides of 

the bias in P, low values of RE found over the lower Mekong Basin, over the Brahmaputra basin 

and over the wide area of the eastern Tibetan plateau are somewhat consistent between the 

GPCP, CMAP and MMM datasets. We find a negative bias in SI over the Indus basin and over 

large parts of the western Tibetan Plateau, which is associated with large RE and low P 

estimates. On the other hand, low estimates of SI over the lower Mekong Basin and eastern 

Tibetan Plateau are associated with the presence of a too regular regime of precipitations (low 

RE). We note that the RE increases as one moves northwest, thus implying a more concentrated 

MPR in that direction. Such transition is however not fully consistent between the observations 

and the MMM, as the latter features a positive bias in RE over large part of northwestern India. It 

is also worth noting that the region defined by values of SI below 0.11 for the MPR corresponds 

fairly well to the actual spatial extent of the south Asian summer monsoon. This also matches 

well with the domain estimated by Pascale et al. (2014) using SI ≤ 0.05 and Wang et al. (2011) 

who used a threshold of 2.5 mm day
-1

 over the estimated annual precipitation range for the study 

region. Such consistent results show that the extent of the monsoon can also be defined not only 

by resorting to an index capturing a seasonal variability, but also considering indicators of sub-

seasonal variability, as in case of present study. The monsoon domain suggested by the MMM is 

underestimated with respect to the observation as some portions of northwestern India, Pakistan 

and China are missing..  
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In contrast to the low bias of P of MMM over northern India, models from the NCAR, NSF-

DOE-NCAR and NOAA-GFDL as well as the model EC-EARTH either suggest negative or no 

biases against the observations. The rest of the models suggest positive bias either over the whole 

India or at least over the Ganges Basin (northern India). Models from NCAR, NSF-DOE-NCAR 

and MPI along with two models (MIROC5, NorESM1-M) suggest very large positive bias of P, 

and SI over the Himalayan range and almost no bias for RE. Models from the MRI along with 

two models (IPSL-CM5B-LR and CSIRO-Mk3-6-0) show over the whole monsoonal domain the 

largest dry bias, with highest RE and lowest SI. Data from the MPI, IPSL, NOAA-GFDL, 

CMCC, MOHC and BCC modeling groups suggest higher RE mainly over Pakistan (Indus 

Basin). The remaining (almost half) models generally underestimate RE over the whole domain. 

A general underestimation of SI by most of the models is either associated with the 

underestimation of RE or P, or both. 

 

Annual Precipitation 

 

Based on the analysis of basin-integrated seasonality indicators, we note from most of the 

models that seasonality of the annual precipitation regime over the Indus (Mekong) basin is 

generally dominated by SI estimates of WPR (MPR) (Table 2). For the mean annual P, the GPCP 

and CMAP datasets substantially differ - CMAP suggests higher magnitude of P particularly 

over the Western Ghats of India and over the lower Mekong Basin (coast of Cambodia), while 

the GPCP suggests the same over the Brahmaputra basin (mainly over Bangladesh, Myanmar 

and Indian province of Assam). Such differences mainly arise from the multi-probed data 

sources merged in these datasets. There is a negligible P over the Thar Desert, Taklimakan 

Desert and over the southern Pakistan, as also shown by MMM. All three datasets, therefore, 

indicate highest estimates of RE and lowest estimates of SI, suggesting a low number of wet 

days and highly erratic precipitation regime over these regions. Similarly, MMM has a positive 

bias in the Western Ghats of India for SI, which is mainly influenced by positive bias of P. The 

pattern of high SI over the Bay of Bengal is, however, not consistent among the GPCP, CMAP 

and MMM datasets, and follows  the pattern of their precipitation maxima The MMM 

underestimates the observed P over the Ganges basin, while it overestimates P – and SI - over the 

eastern Himalaya. As of the coastal Mekong Basin, observations suggest high estimates of SI 

whereas MMM suggests the opposite, because of the lower estimates of RE. Similarly, for the 

eastern part of the Tibetan Plateau, simulated P is overestimated but SI estimates are similar to 

that of the observations because of the compensating negative RE bias.  

 

Summarizing, models from MRI, IPSL, MPI, CMCC and MOHC along with seven models 

(NorESM1-M, INMCM4, FGOALS-g2, CNRM-CM5, CSIRO-Mk3-6-0, CanESM2 and bcc-

csm1-1) substantially underestimate SI over most of the study domain, mainly as a result of 

underestimation of P. Five models (BNU-ESM, CESM-CAM5, EC-EARTH, MIROC-ESM-

CHEM and MIROC-ESM), however, moderately underestimate SI over northern India (Ganges 

Basin), while only MIROC5 has a substantial positive bias. Only models from the NOAA-GFDL 

along with two models (CESM1-BGC and CCSM4) from NCAR suggest values of SI similar to 

observations. For most of the individual models, positive biases in RE compensate 

underestimation of P and SI, and vice versa. Instead, CanESM2 simulates low values of SI, 

associated to negative biases in P and in RE, the latter due to less concentrated MPR over most 

of the land region within the study domain. 
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3.3 Future Changes under the RCP8.5 Scenario 

 

Extracting a robust signal of future changes from the multi-model projections mainly includes 

(relatively) weighing each model according to its skill during the historical period in terms of 

considered skill metrics (Tebaldi et al., 2005 and 2007). The weighted projections either taken 

from all or preferably few ‘reasonable’ models selected based on a weigh-threshold – 

representing (subjective) satisfactory level of the models’ skill - are then synthesized to extract 

the climate change signal (e.g. Levi et al., 2008; Jayasankar et al., 2015). However, owing to 

large influence of the structural uncertainty on the climate model simulations and the fact that 

chosen performance metrics is not exhaustive, it is difficult to accurately assess the climate 

models’ performance, and subsequently, to assign weights to them (Hasson et al., 2013). For 

instance, considering climatological seasonal means and variability as skill metrics, Sharmila et 

al. (2015) have reported a satisfactory skill of four out of 20 CMIP5 models analyzed for the 

Indian region. In contrast, selecting optimal CMIP5 models for the Indian monsoonal projections 

based on the rainfall pattern, Jena et al. (2015) have reported four different CMIP5 models as the 

best models. Such differences in the identified best models highlight that synthesizing projection 

information from best or all skill-based weighted models is subject to additional uncertainties, 

owing to: 1) diversity of the skill metrics employed; 2) sample size of the model simulations 

analyzed, and; 3) choice of the observational datasets. We also remark that different approaches 

have been proposed when aiming at selecting a subset of climate models: the so-called envelope 

method focuses on covering a vast range of projections for some variables of interest, rather than 

getting a best estimate of the climate change signal. See Lutz et al. (2016) for a detailed 

discussion.  

 

We have found that none of the analyzed models achieves a best performance in terms of the 

employed skill metrics. Moreover, regardless of the models’ relative skill for the historical 

period, the magnitude of their projected changes has been found smaller than the extent of their 

offset from the observations (Fig. 7). It is rather optimistic to be confident on the projected 

changes in quantitative terms, though qualitative conclusions can still be drawn. Since the better 

performance of the climate models over the historical period does not guarantee the convergence 

on their projected changes over the future period under the same forcing (Tebaldi et al., 2007; 

Zheng et al., 2015), the robustness of derived qualitative future changes largely depends upon the 

high degree of inter-model agreement. Thus, for extracting robust qualitative changes from the 

limited-skill models, it is more plausible to employ a maximum sample size rather than a subset 

of few better models (Chiew et al., 2009; Zheng et al., 2015). Here, we have assessed the 

qualitative signal of future changes in the considered metrics from all the analyzed climate 

models where the robustness (degree of uncertainty) of such qualitative changes is assessed in 

terms of a majority-model agreement (disagreement).  

 

Our results suggest that majority of the models and thus MMM agree on a slightly delayed 

monsoon onset, substantial increase in the RFA slope, and subsequently, shortening of the active 

monsoon duration for all basins (Table 2). Such results of changes in the monsoonal metrics are 

consistent with the multi-model agreed increase in RE (dry days/precipitation concentration) for 

the MPR (Fig. 8 and Table 5-6). Such findings are further consistent with Jayasankar et al. 
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(2015) who also found more (less) frequent high to extreme (light) rainfall, and thus, increase in 

the Indian summer monsoon rainfall. On the other hand, our findings are in direct contrast to 

widening of the monsoonal duration as reported by Sharmila et al. (2015) based on equally 

weighted four selected models. There is no obvious relationship found between changes in the 

monsoonal duration and changes in the total precipitation. Our results also suggest a less 

intermittent future WPR over all study basins mainly due to projected increase in the number of 

dry days. Interestingly, the direction of change as suggested by the majority-model agreement 

(Fig. 8) differs to that of suggested by MMM, implying that few very wet or very dry models 

may reverse the sign of projected changes in MMM. However, MMM exhibits relatively better 

performance on spatial scale analysis in quantitative terms than most of the analyzed models. 

The MMM suggests a negligible increase in P and SI, though large changes are expected in RE, 

such as, a substantial increase in the number of dry days over the northern Pakistan (HKH 

ranges, upper Indus Basin), southern India, eastern China, Myanmar region and lower Mekong 

Basin and decrease over the southern Pakistan, northern India and parts of the eastern Tibetan 

Plateau (not shown). Regarding changes in the monsoonal extent, MMM suggests a westward 

extension over northwestern India and Pakistan and northward over China (Fig. 9). Most of the 

individual models suggest only slight but similar changes in the extent of the monsoon.   

 

 

4   Summary, Discussions, and Conclusions 

 

Highly variable water supply drives the socio-economic wellbeing in South and Southeast Asia 

and guarantees growth of the agrarian economies. However, the region is exposed to various 

climatic extremes and adverse impacts of climate change, which are drastically exacerbating 

altogether the existing pattern of socio-economic vulnerability in the region. Much needed at 

present is the efficient management of resources and adequate policy devising to mitigate or at 

least better cope with the expected changes. This needs an adequate knowledge of prevailing and 

future state of possible changes in the climate system under the global warming scenario and 

assessment of the associated pattern of change in the hydrology at regional to local scale.  

 

In this study we have reviewed common and consistent systematic biases from the CMIP5 

models over the study region and their improved skills relative to their predecessors, as reported 

so far. Also, using state-of-the-art methods, we have analyzed how well the latest generation 

climate models included in the fifth assessment report of IPCC (2013) are able to describe the 

seasonality of precipitation regimes associated with two large scale circulation modes: monsoon 

system and westerly disturbances over the major river basins of South and Southeast Asia. First, 

we have investigated the skill of the models for each basin in reproducing observed time-

dependent properties of the seasonal cycle from extreme GHG emission scenario RCP8.5. In this 

regard, we have studied the timing of the monsoon onset, the monsoon duration and rate of the 

monsoonal precipitation concentration (our main monsoonal metrics). The diversified skill found 

from the individual models for each study basin, and appropriateness of the relative instead of 

the absolute but distinct thresholds for each individual basin further endorsed the effectiveness of 

our basin scale analysis. Secondly, we have applied time- and threshold-independent indicators 

of seasonality, such as RE and SI along with P, over the study basins and over the spatial extent 

of study domain and separately for the MPR, WPR and annual time scales. We have reported 

general and consistent biases of the CMIP5 models in terms of the chosen metrics, and present 



ACCEPTED MANUSCRIPT

19 
 

their projected future changes by the end of the century under an extreme global warming 

scenario (RCP8.5). The output of our study is of relevance for informing procedures of selection 

of climate model for assessing future climate-related risks (e.g. Lutz et al., 2016).  

 

For the present climate, we note that the CMAP observations suggest similar timings of the 

monsoon onset, retreat and RFA slope as of the GPCP dataset for all basins, except for the 

Brahmaputra basin where it suggests little deviations such as the onset early by one pentad, a 

duration prolonged by two pentads and an RFA slope underestimated by 5%. Such consistency 

between the two dataset has been shown for various metrics and over different land regions 

(Sperber et al., 2013; Sperber and Annamalai, 2014; Pascale et al., 2014 and 2015; Prakash et al., 

2014), despite of their differences in the magnitude of precipitation. Neither any single model 

nor the MMM performs best for the select monsoonal metrics against the considered 

observations. Models feature diverse skills in reproducing the seasonal cycle of precipitation 

over the study basins.  

 

Similar to the CMIP3 models (Hasson et al., 2014a), we note that some CMIP5 models simulate 

unrealistic seasonal cycle of precipitation. These are the BNU-ESM model for the Indus basin, 

the IPSL-CMB-LR model for the Ganges and Brahmaputra basins and the EC-EARTH model 

for all the basins. Hence, such models perform worst in terms of timing of the monsoon onset, 

monsoon duration and the RFA slope. Here, a surprising performance of the EC-EARTH model 

that features a second highest resolution among the CMIP5 models analyzed, indicate that 

without an adequate representation of the needed physical processes, high resolution alone 

cannot lead to realistic simulations of the climate of region. One-third of the studied models 

(bcc-csm1-1, IPSL-CMA-LR, IPSL-CMB-LR, CSIRO-Mk3-6-0, FGOALS-g2, INMCM4 and 

models from CMCC and MRI) featuring either a smoothed or a gentle growth in their fractional 

accumulated P (low RFA slopes) fail to adequately simulate the monsoonal precipitation regime 

over the Indus basins (Fig. 5). Three of these models (IPSL, INMCM and MRI models) 

consistently show such discrepancy from their earlier versions participating in the CMIP3 

archive (Hasson et al., 2014a).  

 

Almost half of the models suggest right timings of the monsoon onset for the Ganges and 

Brahmaputra basins and slightly delayed onset for the Indus basin, while there is a mixed 

behavior for the Mekong basin. An early onset suggested by some models (e.g. over the Mekong 

basin) may possibly be linked to their simulated marked land sea temperature contrasts 

(Annamalai et al., 2007). We note that realistic onset timings over the Ganges basin by most of 

the studied models is in contrast to the general behavior of a delayed onset over India from the 

CMIP3 and CMIP5 models (Sperber et al., 2013; Sperber and Annamalai, 2014). This may be 

attributed to a marked spatial heterogeneity of the monsoonal precipitation, for which typically a 

uniform threshold is applied over the whole domain, for the onset timings. Therefore, we 

encourage probing models’ skill for the monsoon related metrics over small units (such as river 

basins) and through applying distinct thresholds appropriate for such units.  

 

On the other hand, a delayed onset over the Indus basin together with an underestimation of 

monsoon precipitation is mainly linked to a well reported systematic error of suppression of the 

monsoon far north over China and far west over Pakistan, which is common amid both CMIP3 

and CMIP5 modeling efforts (Boos and Hurley, 2013; Sperber et al., 2013; Hasson et al., 2013 
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and 2014a). In these models, an overly smoothed orography west of the Tibetan Plateau (60°E–

80°E longitudinal band), constrained by models’ horizontal resolutions, allows intrusion of the 

mid-latitude dry air well into the monsoonal thermal regime (Chakraborty et al., 2002 and 2006). 

This bogus penetration of cold air weakens the upper-tropospheric thermal maximum, shifts it 

towards the southeast and suppresses the moist convection (Boos and Hurley, 2013). Hence, 

strength of the monsoon precipitation and its low level jet subsides, preventing the monsoonal 

regime extending too far to its western and northwestern extremity, resulting over there a 

delayed onset and a negative precipitation anomaly (Hoskins and Rodwell 1995; Chakraborty et 

al., 2002 and 2006).  

 

Similar to the underrepresentation of the realistic HKH orography, absence of the irrigation 

schemes in models considerably contributes to the systematic monsoon bias over the region 

(Syed et al., 2009 and 2013) that result in an underestimation of precipitation and a delayed 

onset. The irrigation is particularly relevant for the Indus and Ganges basins, where annually a 

large amount of water is diverted to and evaporated from the agricultural fields (Hasson et al., 

2013). Syed et al. (2009) show that significant model biases of temperature and mean sea level 

pressure over parts of the Indus basin are sensitive to the water used for irrigation over there. 

They also show that representation of irrigation scheme in models can result in a relatively small 

land-sea thermal contrast over parts of the Indus basin during summer, reducing penetration of 

the westerlies from the Arabian Sea. This creates favorable conditions for the monsoonal 

currents originating from the Bay of Bengal to penetrate well and deeper into the west and 

northwest India and Pakistan. Similarly during the winter season, the CMIP3 and CMIP5 

coupled models feature a cold sea surface temperature (SST) bias over the northern Arabian Sea 

that persists into spring and summer seasons (Levine and Turner 2012; Levine et al., 2013). As a 

consequence, the low-level monsoonal jet features smaller amount of moisture due to less 

evaporation over cooler north Arabian Sea that subsides the monsoon convection and the low-

level convergence over land reduces the strength of the monsoonal flow and subsequently the 

precipitation (Levine et al., 2013). Marathayil et al. (2013) describe that in the CMIP3 models, 

the cold SST bias over north Arabian Sea mainly results from the advection of cold/dry air by 

anomalously stronger north-easterlies and colder surface temperatures simulated by the models 

over Pakistan and northwest India. Recently, Sandeep and Ajayamohan (2014) have shown from 

CMIP5 models data that the equatorward bias in the subtropical Jetstream is responsible for such 

anomalous cooling of SST over the north Arabian Sea. These systematic biases in the models, 

either due to absence or underrepresentation of important features, makes the realistic simulation 

of climate over the Indus and Ganges basins extremely difficult. 

 

Models generally feature a systematic bias of simulating extended monsoon duration relative to 

the observations for the Indus, Ganges and Brahmaputra basins. This is mainly due to the fact 

that models fail to simulate the observed seasonality, so the RFA slope is generally 

underestimated. The retreat threshold is, therefore, achieved later than its observed timings, 

suggesting extended active monsoon duration for such basins. On the other hand, models tend to 

simulate shortened monsoon duration for the Mekong basin, which is due to higher precipitation 

concentration (overestimated RFA slope) against the observations. Interestingly, we note that 

models suggesting the RFA slope similar to that of the observations simulate mostly a realistic 

active duration of the monsoon. Relevant examples are five models (GFDL-ESM2G and GFDL-

ESM2M, MPI-ESM-LR, MPI-ESM-MR and MIROC5) for the Ganges basin, two models 
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(CSIRO-Mk3-6-0 and MPI-ESM-MR) for the Brahmaputra basin and five models (CCSM4, 

GFDL-CM3, MIROC-ESM-CHEM, MIROC-ESM, MIROC5 and NorESM1-M) for the Mekong 

basin (Table 2). Otherwise, the RFA slope is highly correlated negatively to the monsoon 

duration for any particular model. Hence, the higher the underestimation of an RFA slope the 

larger the overestimation of active monsoon duration. In few cases, RFA slope is also associated 

with the suggested timing of the onset. For instance, the RFA slope is underestimated in a case 

when onset threshold is achieved earlier than the pentad when actually the rapid accumulation 

starts. This situation occurs when the models excessively simulate precipitation during the pre-

monsoonal period, suggesting wrong timing of the onset. Examples are the nine models (bcc-

csm1-1, FGOALS-g2, IPSL-CMB-LR and models from MOHC and MRI) over the Ganges 

basin. Sperber and Annamalai (2014) explain that solo heavy rainfall events can result into such 

a bogus onset.  

 

In summary, one-third of the analyzed models performed well for multiple select metrics (Table 

2), despite of the differences in the magnitude of their simulated precipitation. Considering a 

total of 12 metrics (3 metrics x 4 basins), the MPI models exhibit skill for 7 metrics, two models 

(MIROC5 and CSIRO-Mk3-6-0) exhibit skill for 5 metrics, and six models (CCSM4, CESM1-

CAM5, GFDL-ESM2G, IPSL-CMA-MR, MIROC-ESM and MIROC-ESM-CHEM) exhibit skill 

for 4 metrics. Most of these models show their skill mainly for the Ganges basin, followed by the 

Brahmaputra, Mekong and Indus basins, respectively. Our results of better representation of 

seasonal cycle of monsoonal P for MIROC and CSIRO-Mk3-6-0 models (5 out of 12 metrics) 

are in agreement with Babar et al. (2014).  

 

For the basin-integrated seasonality indicators, we found that seasonality of the MPR (SI) 

positively correlates with the RFA slope estimate, despite the fact that the RFA slope is 

calculated within the active monsoon duration while SI accounts for the whole wet season, 

including precipitation from the pre-onset and post-retreat monsoon season. However, since RFA 

slope estimates are sensitive to identification of right timings of the monsoon onset, as discussed 

earlier, its relation with SI should be carefully considered. Here, we emphasize that 

overestimation of the westerly precipitation over the study basins needs a careful interpretation, 

particularly for the Indus basin, where a large mountainous part of the basin in the north that is 

mainly affected by the westerly precipitation, features a very sparse observational network and 

only few, valley-based, rainfall-only, stations are incorporated in the global gridded datasets. On 

the other hand, merged estimates from the satellite datasets as in case of GPCP/CMAP are 

largely affected by certain limitation of estimation of precipitation in such a high relief area 

(Palazzi et al., 2013). In view of increasing number of observatories in HKH region (Hasson et 

al., 2014b), we encourage validation of the simulated precipitation additionally against newly 

available station observations, in order to be more confident about the climate model 

performance in such high relief areas. 

 

For the seasonality indicators over whole spatial domain (as Fig. 1), no single model was found 

satisfactory against observations. The MMM though does not outperform all individual models 

but somewhat provides a fair agreement with the observations with few exceptions (Table 4). For 

WPR, most of the models generally overestimate SI due to overestimation of P and relatively 

higher (lower) number of wet days over the high (low) land areas. MIROC ESMs followed by 

models from NSF-DOE-NCAR suggest highest precipitation for WPR over the region. In 
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contrast to the general underestimation of the monsoonal precipitation over the Indian plains, 

models from NCAR, NSF-DOE-NCAR and NOAA-GFDL along with EC-EARTH suggest right 

magnitude, even though the latter model simulates an unrealistic seasonal cycle of precipitation. 

Overall, models feature large biases for precipitation and for its spatio-temporal distribution. 

Models generally suggest large RMSE of P and RE for all considered time scales but a high 

spatial correlation (PC >= 0.7) for P, RE and SI against the observations. Most of the models 

suggest σ of P within the observational uncertainty for the monsoon duration and on annual time 

scale while they overestimate it for the WPR. For the monsoon season, such results are 

consistent with findings of Collins et al. (2013), who have considered a larger spectrum of the 

observational uncertainty. 

 

For the future projections on a qualitative scale, most of the models agree on a slightly delayed 

onset for the study basins, which may be caused by profound effect of underrepresented 

topography and/or absence of irrigation water as suggested by studies (Syed et al., 2009; 

Chakraborty, 2006; Levine and Turner 2012; Marathayil et al., 2013; Levine et al., 2013; Boos 

and Hurley, 2013). The models largely agree on the shortening of monsoon duration, which is 

consistent with Jayasankar et al. (2015) and with the recent observations (Ramesh and Goswami, 

2007) but in contrast to Kiripalani et al. (2007) and Sharmila et al. (2015). It is pertinent to 

mention here that signal of a general shortening of the active monsoon duration depends upon 

the choice of relative thresholds - particularly one for the monsoon retreat - which are uniformly 

applied to the present and future climates. Given that precipitation increases under the future 

climate - as apparent from the results for most of the study region - the fractional threshold for 

the monsoon retreat tends to reach earlier as compared to the present climate. We note that most 

of the suggested changes in the timings of onset are of few pentads, which signifies the 

effectiveness and use of a fine-grained dataset for such analysis. This is why Hasson et al. 

(2014a) showed almost no change for the CMIP3 models on a monthly time scale in the onset 

timings of the monsoon by the end of century. The suggested changes, though small, may have 

stark impact on the local hydrology and agricultural regions, particularly over the semi-arid and 

arid plains, and as a whole, on the country scale economic conditions.   

 

Our findings of a less intermittent future WPR for the Indus basin, associated with an increase in 

the number of dry days and decrease in precipitation, is consistent with the observed drying of 

the spring season over the HKH region within the Upper Indus Basin (Hasson et al., 2015a – in 

preparation) and partly with a more frequent occurrence of westerly disturbances over the 

Karakoram (Ridley et al., 2013). Such changes are mainly responsible for the ongoing reduction 

in the ephemeral snowpack extent therein (Hasson et al., 2014b), and subsequent observed 

change in the seasonal water availability. Moreover, future decrease in P under WPR may result 

in a negative budget for the UIB cryosphere, posing a serious threat for much needed melt water 

by the arid region and vulnerable communities downstream (e.g. Salik et al., 2015). A decrease 

in precipitation under WPR is linked to a poleward shift of the westerly storm track as reported 

by various studies (Bengtsson et al., 2006; Fu, 2006; Fu and Lin 2011). Furthermore, projected 

increase in the monsoonal precipitation and extent of its concentration (though with a little multi-

model agreement) indicate intensification of MPR under future warming, which may be 

associated with the extreme hydro-meteorological conditions, already projected (Hirabayashi et 

al. 2013; Han et al., 2016; Limsakul and Singhruck, 2016) and evident from the observations 

(e.g. a series of 2010, 2012 and 2014 monsoonal floods in Pakistan). Though the monsoon 
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breaks are a crucial phenomenon, which severely affects the rain fed agricultural areas in the 

region, statistics of such phenomenon have not been explicitly interpreted here.  

 

In contrast to the recently observed decrease in the spatial extent of the south Asian summer 

monsoon (Ramesh and Goswami, 2007), we have found from MMM its extension in the future, 

which is northward over China and westward over northwest India and Pakistan. Such results are 

consistent with Lee and Wang, (2014), who also suggest westward shifts in the monsoonal 

domain and with Kitoh et al. (2013), who consistently show small changes in the monsoonal 

domain over the region. This implies that the border areas will experience critical changes in 

their precipitation regime in future (Seth et al. 2013; Hasson et al. 2014a). It is pertinent to 

mention here that due to the limited skill of the models in reproducing the monsoonal regime 

over the northwest India and Pakistan such MMM based projection of changes in the monsoonal 

domain westward owes a little confidence. It is therefore necessary to see such a change from 

those individual models that feature minimum biases over the northwest India and Pakistan such 

as CCSM4, CESM1-BGC, EC-EARTH and GFDL-CM3 (see supplement Fig. 2). 

  

Various discrepancies in representation of the seasonal cycle of precipitation in the CMIP5 

models are mainly associated with the representation of the south Asian summer monsoon. Such 

discrepancies generally attribute to issues with large scale atmospheric circulations, 

underrepresentation of real orography, and simplest form of land-atmospheric-ocean processes 

and their interaction. We emphasize here that inclusion of the irrigation water and appropriate 

representation of the orography are vital for realistically reproducing the summer monsoonal 

precipitation regime and to obtain its reliable future changes over the region. The dynamical 

downscaling using Regional Climate Models (RCMs) - though computationally expensive and 

largely depends upon the skill of global model forcing - can be helpful in improving the 

simulation of monsoonal regime by incorporating the local-scale geo-physical characteristics and 

detailed land-use/-cover dynamics through achieving high resolutions (Hasson et al., 2013; 

Palazzi et al., 2013). In view of the diverse skillset found for the CMIP5 models, we suggest that 

use of their output in further impact assessment models and for policy making in the region 

should preferably be supported by the fine-scaled dynamical downscaling efforts, such as 

Coordinated Regional Climate Downscaling Experiment (CORDEX) South Asia. We also 

conclude that Indus and Ganges basins (Pakistan and north-/west India region) are very critical in 

nature and difficult for the present-day climate models in order to reproduce their climate. This 

has subsequent implications for driving the impact assessment models for assessing climate 

change impacts on various socio-economic development sectors for these basins. In such regards, 

the state-of-the-art coupled models need to be improved enormously and meaningfully, 

particularly for the representation of region-specific geo-physical characteristics and their 

interaction with the physical processes that are presently absent completely or represented 

inadequately, so far. 
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Figure 1. Study Area (left to right), Indus, Ganges, Brahmaputra and Mekong basins 
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Figure 2: Climatological mean basin-integrated pentad precipitation (mm) for the Indus, 

Ganges, Brahmaputra and Mekong basins for the CMIP5 climate models and for the 

GPCP/CMAP observations 
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Figure 3: Same as figure 2 but for the accumulated basin-integrated mean pentad 

precipitation (mm)  
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Figure 4: Same as figure 2 but for the fractional accumulated basin-integrated mean 

pentad precipitation. Dotted lines show timings of the monsoon onset and retreat for each 

basin. 
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Figure 5. The rapid fractional accumulation (RFA) slope for the active monsoonal duration 

(onset to retreat) plotted against the monsoon onset pentad 
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Figure 6. a) Mean total precipitation in mm, b) RE, c) SI from GPCP, CMAP and MMM 

dataset for the westerly precipitation regime (WPR), monsoonal precipitation regime 

(MPR) and annual precipitation. Note: spatial biases in P from individual model with 
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respect to GPCP are given in the supplement. Political boundaries are shown in black while 

study basins are shown in contrast colors 

  

  

  
Figure 7. Future uncertainty in the timings of monsoon onset (in pentads) and in the RFA 

slope (%) presented as a ratio between their projected changes for the period (2061-2100) 

under the RCP8.5 scenario to the offset from observation for the historical period (1961-

2000). Negative (positive) values indicate that RCP8.5 change and historical offset observe 

opposite (same) signs. The GFDL-ESM-2G for Ganges and FGOALS-g2 and NorESM1-M 

for Mekong suggest high ratio for slope while MIROC-ESM-CHEM and IPSL-CMA5-LR 

for Mekong suggest high ratio for onset timings, which are out of scale in the figure 
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Figure 8. The spatial scale robustness of the qualitative signal of projected changes 

computed as the majority-model agreement. The majority-model agreement is obtained as 

the number of models suggesting a positive change minus the number of models suggesting 

a negative or no change in the respective metrics 
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Figure 9. Spatial extent of the monsoon as estimated by SI=0.11 from the GPCP (black), 

the CMAP (cyan), MMM historical (blue) and MMM RCP85 (red) lines. 
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Table 1. List of CMIP5 models, their modelling groups and resolutions.  
 

S. 
No. 

 
Modeling Group  

 
Model Name 

Atm. 
Resolution 
(lonxlat) 

 
Model 
Level 

1 Beijing Climate Center, China Meteorological Administration(BCC) BCC-CSM1-1 2.8 x 2.8 26 

2 College of Global Change and Earth System Science, Beijing 
Normal University (GCESS) 

BNU-ESM 2.8 x 2.8 32 

3 Canadian Centre for Climate Modelling and Analysis (CCCMA) CanESM2 2.8 x 2.8 35 

4 NCAR Community Climate System Model, (CCSM) CCSM4 1.25 x 0.94 27 

5 Community Earth System Model Contributors 
(NSF-DOE-NCAR) 

CESM1-BGC 1.25 x 0.94 27 

6 CESM1-CAM5 1.25 x 0.94 27 

7 Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) CMCC-CESM 3.75 x 3.75 39 

8 CMCC-CMS 1.875 x 1.875 95 

9 CMCC-CM 0.75 x 0.75 31 

10 Centre National de Recherches Météorologiques Centre Européen 
de Recherche et Formation Avancée en Calcul Scientifique 

CNRM-CM5 1.4 x 1.4 31 

11 Commonwealth Scientific and Industrial Research Organization in 
collaboration with QCCCE (CSIRO-QCCCCE) 

CSIRO-Mk3-6-0 1.875 x 1.875 18 

12 EC-EARTH consortium (EC-EARTH) EC-EARTH 1.125 x1.125 62 

13 LASG, Institute of Atmospheric Physics, Chinese Academy of 
Sciences and CESS, Tsinghua University (LASG-CESS) 

FGOALS-g2 2.8125 x 2.8125 26 

14 NOAA Geophysical Fluid Dynamics Laboratory (NOAA-GFDL) GFDL-CM3 2.5 x 2.0 48 

15 GFDL-ESM2G 2.5 x 2.0 24 

16 GFDL-ESM2M 2.5 x 2.0 24 

17 Met Office Hadley Centre (MOHC) HadGEM2-CC 1.875 x 1.24 60 

18 HadGEM2-ES 1.875 x1.24 38 

19 Institute for Numerical Mathematics (INM) INMCM4 2 x1.5 21 

20 Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR 3.75 x1.89 39 

21 IPSL-CM5A-MR 2.5 x1.25 39 

22 IPSL-CM5B-LR 3.75 x1.9 39 

23 Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies (MIROC) 

MIROC-ESM-CHEM 2.8 x2.8 80 

24 MIROC-ESM 2.81 x 2.81 80 

25 MIROC5 1.4 x 1.4 40 

26 Max-Planck-Institut für Meteorologie (MPI-M) MPI-ESM-LR 1.875 x1.875 47 

27 MPI-ESM-MR 1.875 x1.875 95 

28 Meteorological Research Institute (MRI) MRI-CGCM3 1.125x1.125 48 

29 MRI-ESM1 1.125 x 1.125 48 

30 Norwegian Climate Centre (NCC) NorESM1-M 2.5 x 1.9 26 
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Table 2. Black entries. First row: Pentad of onset (D) and duration in Pentads (D) of the monsoon, and 

slope (S) of the rapid fractional accumulation (RFA) for the considered River basins as determined by the 

GPCP dataset for 1961-2000.  Second row: Offset of CMAP relative to the GPCP in the timings of 

monsoon onset (O) and its duration (D) in pentads and % difference in the slope of the rapid fractional 

accumulation (S) during historical period (1961-2000). Subsequent rows:  Same as the second row but for 

the indicated climate models simulations referring to 1961-2000 period. Blue entries, for each model: 

Future Changes of O (in pentad), D (in pentad), and S (in %) for the period 2061-2100 (RCP8.5 scenario) 

relative to the period 1961-2000. Note: Negative values imply underestimation/decrease or early timings 

while positive values suggest the opposite. The bold values for the historical period (1961-2000) suggest 

statistically insignificant offset from observations while for changes under the RCP8.5 (shown in blue) the 

bold figures suggest statistically significant changes 

 

  
 HISTORICAL (1961-2000) RCP8.5 (2061-2100) 

Data INDUS GANGES BRAHMA MEKONG INDUS GANGES BRAHMA MEKONG 

 O D S O D S O D S O D S O D S O D S O D S O D S 

GPCP 37 16 0.05 32 25 0.04 29 28 0.03 26 36 0.025             

CMAP 0 2 -8 1 -1 5 -1 2 -5 0 -1 3             

MMM 1 10 -45 -4 10 -24 -2 7 -16 -1 0 5 0 -1 8 2 -4 10 0 -2 5 1 -1 1 

bcc-csm1-1 8 9 -46 -8 21 -47 -1 11 -21 1 -5 13 -1 1 -4 2 -3 4 0 -1 1 0 0 -2 

BNU-ESM 3 10 -46 2 4 -13 2 3 -6 0 -1 7 2 -3 21 3 -4 7 2 -2 4 2 -1 3 

CanESM2 2 8 -34 1 6 -20 1 3 -8 -2 4 -7 -2 4 -21 -2 1 1 0 -3 15 1 -2 4 

CCSM4 1 6 -28 1 6 -21 -1 6 -21 -1 2 0 0 -1 -1 2 -3 8 0 -2 8 2 0 0 

CESM1-BGC 1 6 -30 1 5 -16 -1 6 -21 -2 2 -1 0 -1 1 2 -3 11 1 -2 7 2 -2 4 

CESM1-CAM5 0 5 -22 1 1 -8 -3 7 -22 -2 2 -1 0 1 -6 0 0 2 -1 0 4 2 -1 2 

CMCC-CESM 2 10 -50 -4 5 -12 -2 4 -9 0 -1 6 3 -1 7 -2 3 -10 1 -3 5 2 -1 2 

CMCC-CMS 3 12 -53 -3 10 -25 -1 5 -12 0 -2 10 0 -2 17 3 -6 18 -1 -2 5 2 -3 6 

CMCC-CM 2 13 -53 0 8 -23 0 3 -5 1 -4 14 1 -4 21 1 -5 26 1 -3 9 1 -3 4 

CNRM-CM5 1 10 -42 0 5 -16 -3 7 -17 -3 5 -8 0 0 2 0 -1 3 0 -1 1 1 -1 4 

CSIRO-Mk3-6-0 0 12 -55 -1 5 -13 1 1 2 2 -7 15 1 0 2 4 -2 6 -2 3 -9 1 -2 7 

EC-EARTH* -2 15 -54 -19 29 -60 -11 19 -44 -20 27 -52 0 0 -1 -1 1 -5 -2 3 -9 0 0 -3 

FGOALS-g2 2 10 -47 -9 18 -39 -3 8 -19 0 1 2 -2 -1 11 7 -10 23 2 -3 7 -4 8 -18 

GFDL-CM3 3 7 -34 2 6 -19 -2 11 -25 2 -1 5 -1 -2 12 0 -4 16 -1 -2 1 0 0 3 

GFDL-ESM2G 3 6 -30 4 -2 0 0 5 -14 1 -3 9 0 0 -2 0 1 -3 0 -1 2 1 1 -2 

GFDL-ESM2M 3 5 -27 3 0 -4 -1 6 -17 2 -4 15 -1 4 -16 1 0 -4 1 -2 7 1 -1 2 

HadGEM2-CC -2 11 -47 -9 15 -30 -6 8 -18 2 -4 16 0 -5 38 4 -9 23 0 -4 8 1 0 -1 

HadGEM2-ES -1 12 -49 -9 14 -29 -6 8 -17 3 -5 19 -1 -5 34 5 -10 27 1 -4 9 0 1 -5 

inmcm4 2 11 -49 -1 11 -29 0 6 -16 -4 8 -14 0 -1 5 2 -5 15 -1 -1 4 -1 0 0 

IPSL-CM5A-LR* 4 12 -55 -11 21 -42 -5 12 -24 -2 1 0 -2 1 8 13 -16 60 9 -12 43 3 -3 9 

IPSL-CM5A-MR 1 14 -60 -3 11 -26 -3 8 -18 -2 0 1 0 -3 38 4 -7 29 4 -7 20 3 -3 6 

IPSL-CM5B-LR* -2 19 -67 -23 36 -68 -11 21 -41 4 -6 31 0 -1 5 3 -4 31 3 -6 13 2 -1 2 

MIROC-ESM-CHEM -1 9 -41 -1 9 -30 0 7 -23 2 1 0 1 -2 16 2 -4 13 0 -1 4 0 1 -3 

MIROC-ESM -2 10 -43 -2 8 -28 0 6 -22 2 1 0 1 -4 27 2 -4 14 -1 0 3 0 0 -2 

MIROC5 0 12 -49 0 -1 2 -2 3 -12 -3 1 -5 0 -6 33 1 2 -9 -2 3 -9 -1 2 -1 

MPI-ESM-LR 1 10 -45 0 2 -7 0 2 -6 -1 -2 7 0 -2 9 4 -3 6 2 -2 6 1 -3 7 

MPI-ESM-MR 2 9 -42 0 2 -5 1 2 -4 1 -4 13 2 0 2 3 -1 3 0 0 1 1 -1 1 

MRI-CGCM3* 0 14 -55 -10 19 -42 -2 5 -9 3 -5 24 -1 1 -1 -1 0 4 -2 0 -2 1 -1 1 

MRI-ESM1* -1 14 -55 -11 21 -44 -2 4 -8 2 -5 26 0 1 1 3 -2 8 -2 1 -4 2 0 0 

NorESM1-M 2 7 -33 1 6 -18 2 2 -8 0 0 5 1 -3 12 4 -5 10 1 -2 4 0 1 -5 
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Table 3. Estimates for the basin integrated seasonality indicators, Precipitation (P), Relative Entropy (RE) and Seasonality Index (SI) for the 

historical period (1961-2000).  

Basins→  Indus Ganges Brahmaputra Mekong 

 Westerly Monsoon Westerly Monsoon Westerly Monsoon Westerly Monsoon 

Model and Obs.↓ P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI 

GPCP 117 1.6 0.05 296 1.3 0.12 93 2.1 0.06 874 0.9 0.24 140 1.4 0.07 876 0.6 0.15 256 1.4 0.12 1292 0.5 0.21 
CMAP 117 1.8 0.06 244 1.4 0.10 81 2.2 0.05 735 0.9 0.21 144 1.4 0.06 683 0.5 0.11 216 1.5 0.10 1118 0.5 0.18 
bcc-csm1-1 262 1.6 0.14 151 2.0 0.03 253 1.9 0.23 592 1.8 0.10 403 0.9 0.21 1542 0.7 0.13 237 1.3 0.19 1994 0.8 0.20 
BNU-ESM 199 1.8 0.14 265 1.4 0.11 177 2.0 0.19 961 0.9 0.27 298 1.0 0.17 1289 0.5 0.22 285 1.0 0.17 1291 0.3 0.13 
CanESM2 112 2.0 0.09 177 1.3 0.07 125 2.2 0.16 706 0.8 0.17 221 1.2 0.14 1217 0.5 0.21 343 0.9 0.17 1124 0.3 0.11 
CCSM4 203 1.9 0.15 514 1.2 0.19 244 2.1 0.29 1265 0.9 0.34 497 1.1 0.30 1919 0.5 0.29 358 0.9 0.19 1292 0.4 0.18 
CESM1-BGC 201 1.9 0.15 488 1.2 0.18 228 2.1 0.27 1261 0.9 0.35 514 1.1 0.30 1884 0.5 0.28 345 1.0 0.20 1266 0.4 0.17 
CESM1-CAM5 152 1.9 0.12 447 1.1 0.14 143 2.4 0.19 1340 0.7 0.30 764 1.1 0.41 2338 0.4 0.28 351 1.1 0.21 1139 0.4 0.14 
CMCC-CESM 136 2.2 0.11 104 2.2 0.05 130 2.1 0.14 652 0.8 0.13 206 1.4 0.17 916 0.5 0.13 248 1.4 0.20 1297 0.3 0.12 
CMCC-CM 249 2.4 0.18 192 2.4 0.09 180 2.8 0.20 714 1.4 0.27 479 1.3 0.29 1820 0.7 0.36 150 2.1 0.18 1035 0.6 0.21 
CMCC-CMS 288 2.1 0.19 194 2.3 0.09 216 2.6 0.24 887 1.1 0.26 489 1.1 0.28 1712 0.5 0.28 197 1.8 0.20 1117 0.6 0.20 
CNRM-CM5 246 1.5 0.16 334 1.1 0.11 176 2.1 0.18 922 0.8 0.21 472 1.0 0.28 1587 0.5 0.23 380 0.9 0.21 1163 0.4 0.15 
CSIRO-Mk3-6-0 102 1.9 0.08 79 2.1 0.03 97 2.3 0.11 487 1.9 0.18 241 1.3 0.15 1253 0.5 0.19 148 1.6 0.13 1464 0.6 0.27 
EC-EARTH 170 1.6 0.13 598 0.7 0.13 147 2.1 0.17 1048 0.4 0.15 315 1.1 0.18 1174 0.3 0.10 376 1.0 0.20 928 0.3 0.10 
FGOALS-g2 268 1.0 0.12 210 0.9 0.06 214 1.3 0.15 480 0.8 0.10 228 0.8 0.11 681 0.3 0.07 363 1.1 0.24 1233 0.4 0.14 
GFDL-CM3 248 1.7 0.15 355 1.2 0.13 192 2.3 0.22 1029 0.7 0.21 463 0.9 0.20 1373 0.3 0.14 217 1.2 0.15 1204 0.4 0.14 
GFDL-ESM2G 168 2.4 0.12 311 1.9 0.15 96 2.9 0.12 1141 0.9 0.30 273 1.2 0.17 1340 0.4 0.16 214 1.8 0.19 1508 0.4 0.19 
GFDL-ESM2M 156 2.4 0.12 307 1.8 0.14 118 2.7 0.15 1116 0.9 0.30 309 1.1 0.19 1441 0.4 0.17 200 1.8 0.17 1434 0.5 0.20 
HadGEM2-CC 341 1.1 0.19 493 1.1 0.12 281 1.2 0.16 1058 1.1 0.28 469 0.8 0.22 1370 0.3 0.16 178 1.4 0.14 1158 0.6 0.22 
HadGEM2-ES 332 1.1 0.19 469 1.1 0.12 259 1.1 0.15 1054 1.1 0.29 442 0.8 0.20 1283 0.4 0.16 180 1.4 0.14 1194 0.6 0.22 
inmcm4 266 1.5 0.18 251 1.1 0.08 275 1.5 0.25 1002 0.6 0.17 314 0.9 0.16 1246 0.3 0.10 552 0.7 0.19 1347 0.3 0.12 
IPSL-CM5A-LR 218 2.3 0.17 111 2.3 0.06 176 2.5 0.21 438 1.5 0.16 233 1.3 0.18 746 0.7 0.15 294 1.3 0.22 1133 0.4 0.13 
IPSL-CM5A-MR 165 2.4 0.15 103 2.2 0.05 144 2.7 0.19 542 1.3 0.17 316 1.4 0.21 1114 0.6 0.17 281 1.4 0.21 1119 0.4 0.14 
IPSL-CM5B-LR 301 1.9 0.18 156 2.3 0.06 284 2.4 0.28 225 2.0 0.09 361 1.1 0.22 754 0.6 0.14 203 1.7 0.20 1257 0.6 0.25 
MIROC5 268 1.2 0.16 253 1.4 0.10 191 1.7 0.18 1572 0.9 0.42 426 1.2 0.30 1826 0.4 0.23 312 1.3 0.24 1298 0.4 0.17 
MIROC-ESM-CHEM 318 1.4 0.17 665 0.9 0.16 243 1.8 0.21 1045 0.6 0.19 307 1.3 0.22 1215 0.4 0.15 305 1.3 0.20 1038 0.4 0.11 
MIROC-ESM 332 1.4 0.19 682 0.8 0.16 233 1.9 0.21 1063 0.6 0.19 285 1.3 0.21 1204 0.4 0.14 307 1.3 0.20 1031 0.4 0.12 
MPI-ESM-LR 220 2.3 0.16 254 1.8 0.09 146 2.9 0.18 1087 1.0 0.29 379 1.4 0.26 1902 0.5 0.27 208 1.9 0.22 1112 0.5 0.18 
MPI-ESM-MR 251 2.2 0.17 256 1.9 0.11 153 2.9 0.18 1048 1.1 0.31 407 1.3 0.26 1922 0.5 0.32 174 2.0 0.18 1150 0.6 0.20 
MRI-CGCM3 180 1.9 0.12 182 1.8 0.06 141 2.3 0.16 333 1.8 0.14 317 1.3 0.21 1292 0.6 0.23 216 1.6 0.19 1100 0.7 0.24 
MRI-ESM1 189 1.8 0.12 175 1.9 0.06 155 2.2 0.17 344 1.9 0.15 334 1.2 0.21 1344 0.6 0.24 199 1.6 0.17 1103 0.7 0.25 
NorESM1-M 249 1.7 0.16 409 1.3 0.15 251 1.7 0.23 1197 0.9 0.33 424 0.9 0.22 1984 0.4 0.26 292 0.9 0.16 1321 0.4 0.15 
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Table 4. Root mean Square Error (ɛ), Pattern Correlation (PC) and Standard Deviation (σ) for all seasonality indicators over the spatial domain for all considered 
time periods. Top three estimates closest (farthest) to observations are highlighted in yellow (red) while estimates within the observation uncertainty are 
marked green. 

Datasets 

Annual Monsoon Westerly 

P RE SI P RE SI P RE  SI  

ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ ɛ PC σ 

GPCP 0 1.00 599 0.00 1.00 0.48 0.00 1.00 0.16 0 1.00 484 0.00 1.00 0.50 0.00 1.00 0.09 0 1.00 207 0.00 1.00 0.67 0.00 1.00 0.07 

CMAP 428 0.87 809 0.13 0.98 0.53 0.10 0.83 0.19 315 0.85 587 0.08 0.99 0.51 0.06 0.84 0.10 127 0.95 297 0.22 0.96 0.72 0.04 0.93 0.09 

MMM 489 0.78 647 0.40 0.66 0.45 0.12 0.75 0.17 411 0.78 552 0.35 0.73 0.43 0.08 0.65 0.06 170 0.84 253 0.61 0.67 0.68 0.12 0.79 0.12 

bcc-csm1-1 573 0.69 704 0.61 0.37 0.58 0.27 0.61 0.30 692 0.70 797 0.59 0.47 0.55 0.11 0.43 0.09 190 0.61 183 0.73 0.55 0.78 0.17 0.72 0.16 

BNU-ESM 585 0.66 584 0.44 0.66 0.47 0.13 0.66 0.15 446 0.66 477 0.37 0.77 0.45 0.09 0.57 0.09 182 0.77 236 0.70 0.62 0.76 0.11 0.75 0.10 

CanESM2 538 0.79 811 0.40 0.75 0.48 0.13 0.67 0.13 342 0.79 535 0.38 0.77 0.43 0.10 0.47 0.06 261 0.89 389 0.61 0.67 0.68 0.11 0.73 0.12 

CCSM4 670 0.67 728 0.36 0.70 0.42 0.18 0.68 0.20 488 0.66 552 0.31 0.79 0.41 0.11 0.66 0.12 235 0.82 321 0.57 0.64 0.62 0.22 0.69 0.18 

CESM1-BGC 650 0.67 720 0.35 0.71 0.42 0.18 0.70 0.20 479 0.67 554 0.30 0.80 0.41 0.11 0.67 0.12 218 0.82 306 0.57 0.65 0.63 0.21 0.71 0.18 

CESM1-CAM5 859 0.60 930 0.34 0.77 0.42 0.16 0.60 0.18 587 0.57 637 0.35 0.81 0.38 0.09 0.56 0.10 344 0.81 436 0.54 0.71 0.70 0.20 0.72 0.18 

CMCC-CESM 650 0.79 882 0.52 0.62 0.63 0.14 0.69 0.18 538 0.75 721 0.55 0.73 0.78 0.08 0.59 0.08 187 0.74 243 0.71 0.58 0.81 0.14 0.73 0.13 

CMCC-CM 618 0.73 822 0.54 0.69 0.68 0.20 0.72 0.24 506 0.73 686 0.52 0.77 0.74 0.11 0.68 0.13 193 0.67 233 0.77 0.67 0.93 0.22 0.72 0.18 

CMCC-CMS 618 0.73 822 0.54 0.69 0.68 0.20 0.72 0.24 506 0.73 686 0.52 0.77 0.74 0.11 0.68 0.13 193 0.67 233 0.77 0.67 0.93 0.22 0.72 0.18 

CNRM-CM5 575 0.75 799 0.35 0.79 0.47 0.11 0.71 0.14 381 0.75 545 0.37 0.77 0.37 0.08 0.57 0.07 232 0.84 330 0.56 0.72 0.75 0.15 0.76 0.13 

CSIRO-Mk3-6-0 526 0.73 774 0.60 0.56 0.61 0.18 0.62 0.22 467 0.70 651 0.60 0.56 0.65 0.11 0.50 0.12 145 0.80 244 0.60 0.62 0.67 0.15 0.74 0.17 

EC-EARTH 553 0.81 729 0.36 0.82 0.42 0.14 0.67 0.17 405 0.75 520 0.44 0.75 0.41 0.09 0.57 0.09 234 0.89 350 0.49 0.79 0.75 0.17 0.84 0.16 

FGOALS-g2 645 0.66 788 0.55 0.45 0.35 0.23 0.56 0.27 570 0.62 705 0.49 0.59 0.24 0.14 0.44 0.15 180 0.80 252 0.77 0.56 0.44 0.11 0.80 0.12 

GFDL-CM3 456 0.75 563 0.39 0.73 0.44 0.1 0.77 0.12 321 0.80 446 0.38 0.81 0.40 0.08 0.56 0.06 175 0.74 235 0.59 0.70 0.81 0.15 0.73 0.13 

GFDL-ESM2G 503 0.77 699 0.49 0.64 0.64 0.11 0.79 0.16 341 0.82 521 0.42 0.76 0.64 0.07 0.64 0.08 212 0.79 321 0.84 0.66 1.07 0.15 0.72 0.15 

GFDL-ESM2M 495 0.74 646 0.51 0.63 0.65 0.12 0.76 0.16 351 0.77 486 0.40 0.76 0.62 0.07 0.66 0.08 187 0.79 287 0.81 0.65 1.04 0.14 0.67 0.13 

HadGEM2-CC 673 0.66 853 0.59 0.45 0.61 0.20 0.67 0.25 526 0.65 679 0.61 0.39 0.59 0.13 0.64 0.16 226 0.78 319 0.66 0.55 0.71 0.20 0.70 0.20 

HadGEM2-ES 684 0.68 875 0.58 0.46 0.60 0.21 0.67 0.26 537 0.67 700 0.59 0.41 0.57 0.13 0.64 0.16 225 0.78 321 0.66 0.56 0.72 0.20 0.70 0.20 

inmcm4 592 0.73 706 0.53 0.71 0.40 0.14 0.64 0.10 382 0.72 480 0.46 0.76 0.35 0.10 0.55 0.05 288 0.82 341 0.76 0.67 0.53 0.12 0.51 0.07 

IPSL-CM5A-LR 467 0.76 712 0.62 0.58 0.76 0.13 0.70 0.13 344 0.77 494 0.59 0.61 0.74 0.09 0.54 0.07 209 0.81 316 0.72 0.65 0.94 0.14 0.68 0.13 

IPSL-CM5A-MR 468 0.77 727 0.60 0.55 0.72 0.11 0.76 0.14 338 0.78 524 0.55 0.62 0.70 0.09 0.59 0.07 195 0.82 305 0.72 0.62 0.90 0.14 0.74 0.13 

IPSL-CM5B-LR 536 0.64 641 0.76 0.45 0.81 0.17 0.54 0.19 450 0.64 530 0.79 0.45 0.82 0.11 0.38 0.11 206 0.50 205 0.74 0.56 0.87 0.17 0.52 0.16 

MIROC5 672 0.80 803 0.38 0.65 0.39 0.23 0.74 0.26 551 0.76 692 0.34 0.76 0.42 0.13 0.70 0.15 239 0.78 316 0.60 0.57 0.53 0.25 0.74 0.23 

MIROC-ESM-CHEM 797 0.54 739 0.50 0.55 0.40 0.14 0.61 0.15 599 0.48 519 0.51 0.65 0.31 0.08 0.56 0.07 285 0.76 369 0.63 0.63 0.72 0.15 0.68 0.13 

MIROC-ESM 797 0.54 739 0.50 0.55 0.40 0.14 0.61 0.15 599 0.48 519 0.51 0.65 0.31 0.08 0.56 0.07 285 0.76 369 0.63 0.63 0.72 0.15 0.68 0.13 

MPI-ESM-LR 621 0.71 802 0.48 0.74 0.67 0.18 0.70 0.21 478 0.71 628 0.43 0.80 0.69 0.10 0.65 0.12 177 0.79 270 0.82 0.71 1.01 0.21 0.76 0.19 

MPI-ESM-MR 654 0.72 821 0.48 0.72 0.61 0.22 0.71 0.24 541 0.72 683 0.43 0.78 0.65 0.12 0.67 0.13 171 0.72 235 0.82 0.70 0.98 0.20 0.73 0.18 

MRI-CGCM3 539 0.66 637 0.72 0.70 0.76 0.16 0.59 0.19 463 0.62 509 0.66 0.62 0.67 0.11 0.47 0.11 150 0.74 202 0.81 0.68 0.94 0.14 0.74 0.15 

MRI-ESM1 527 0.66 619 0.75 0.71 0.80 0.16 0.62 0.19 453 0.63 504 0.69 0.64 0.71 0.11 0.51 0.12 159 0.69 187 0.82 0.66 0.93 0.13 0.75 0.14 

NorESM1-M 582 0.64 609 0.39 0.66 0.43 0.15 0.64 0.16 448 0.65 490 0.33 0.79 0.47 0.09 0.60 0.10 187 0.76 258 0.62 0.60 0.57 0.18 0.63 0.16 
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Table 5. Percentage change in the seasonality indicators for future period (2061-2100) for WPR and MPR for 
all basins under RCP8.5 scenario relative to the historical period (1961-2000). Note: Negative values suggest 
decrease in P, SI and RE while positive values suggest the opposite. 

Basins→  Indus Ganges Brahmaputra Mekong 
  Westerly Monsoon Westerly Monsoon Westerly Monsoon Westerly Monsoon 
Models P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI P RE SI 
 % % % % % % % % % % % % % % % % % % % % % % % % 

bcc-csm1-1 7 6 20 3 0 183 14 -1 19 14 -10 197 14 -1 15 -3 10 191 1 3 6 -15 13 153 
BNU-ESM -1 5 3 41 -6 29 -4 8 1 19 1 20 0 7 6 11 9 16 3 17 15 9 19 17 
CanESM2 22 -8 18 5 -11 -1 26 -17 5 20 25 51 41 -5 37 47 38 99 4 20 28 12 27 47 
CCSM4 1 6 14 9 9 20 -7 1 -4 16 8 32 3 10 9 16 16 34 10 25 36 13 19 23 
CESM1-BGC 1 6 14 13 12 27 -6 -1 -7 15 10 27 2 15 14 19 15 39 4 12 19 14 28 38 
CESM1-CAM5 17 2 22 9 1 17 18 -9 6 13 18 25 36 4 35 26 23 48 10 14 25 12 10 29 
CMCC-CESM -8 15 7 -33 7 -21 1 6 8 -4 8 -1 -16 13 -2 2 1 14 -4 16 7 10 17 25 
CMCC-CM -4 11 0 12 4 31 -24 12 -10 29 7 41 -6 27 22 19 14 48 -4 17 6 20 25 37 
CMCC-CMS -18 18 -4 5 4 9 -30 14 -19 3 13 13 -2 33 28 10 27 37 -8 16 2 22 5 32 
CNRM-CM5 10 0 6 15 -12 2 8 0 5 18 -7 14 27 1 25 23 -13 20 -1 8 2 9 7 21 
CSIRO-Mk3-6-0 28 1 21 31 1 60 15 -1 13 31 -12 34 29 0 35 4 14 17 -17 15 -3 7 7 12 
EC-EARTH 3 15 10 0 20 22 -12 8 -8 11 38 41 11 9 27 16 18 62 -2 12 7 10 37 36 
FGOALS-g2 -16 24 -1 27 -12 4 -16 16 2 47 -27 23 1 25 23 16 -2 8 43 -8 16 -16 -7 -19 
GFDL-CM3 -8 12 15 31 -22 1 -22 2 -18 28 -13 19 8 -3 7 29 15 41 8 8 1 12 4 29 
GFDL-ESM2G 1 6 26 1 2 -4 22 -1 38 8 20 22 21 -7 17 25 19 62 24 -1 25 8 7 17 
GFDL-ESM2M 14 4 30 -6 11 -10 11 2 19 7 34 27 4 0 0 20 19 64 1 6 11 4 13 35 
HadGEM2-CC 0 19 21 25 0 33 -7 4 18 35 -7 42 -8 29 23 7 45 34 14 13 34 -6 28 19 
HadGEM2-ES -10 21 6 18 5 26 -13 20 15 27 -3 31 -10 36 34 10 9 29 23 8 42 -7 26 19 
inmcm4 -13 7 -6 19 0 15 -20 6 -20 14 3 10 3 1 5 10 -15 4 15 15 18 15 -6 11 
IPSL-CM5A-LR -15 6 4 6 -2 14 -32 14 -19 34 -5 39 -32 29 -19 18 -5 16 -13 24 -3 4 17 32 
IPSL-CM5A-MR -8 8 16 48 -7 56 -21 9 -7 33 -7 32 -44 45 -13 8 6 29 -11 24 3 10 23 32 
IPSL-CM5B-LR 8 11 21 19 -9 30 -13 6 -10 69 -18 67 -11 10 1 25 -5 17 1 4 0 -2 6 -1 
MIROC5 -1 22 11 67 -9 43 3 10 18 15 -8 5 40 7 49 14 7 26 34 -13 13 11 -8 3 
MIROC-ESM-CHEM -16 13 -5 9 -6 6 -19 19 -1 17 3 24 12 -10 1 16 4 28 3 -3 0 1 -12 3 
MIROC-ESM -20 3 -19 12 0 5 -18 0 -14 15 3 25 25 -10 12 15 1 31 5 -6 1 4 -15 -10 
MPI-ESM-LR -13 14 0 -4 12 1 -25 14 -10 -1 7 5 -16 25 1 3 9 26 -12 20 -5 19 20 41 
MPI-ESM-MR -4 12 3 -2 11 2 -9 6 6 -4 9 4 -2 15 11 0 20 13 -1 10 13 15 9 34 
MRI-CGCM3 26 -6 20 16 1 13 19 -8 12 28 0 35 34 -6 30 17 7 32 0 6 9 16 13 35 
MRI-ESM1 26 0 30 22 -3 18 13 -2 17 31 -5 39 26 7 35 9 9 23 15 8 36 18 14 33 
NorESM1-M -9 6 -2 23 -5 24 -3 12 7 17 1 17 1 13 13 12 17 24 39 7 47 16 -6 23 
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Table 6. Estimates for the basin integrated seasonality indicators, Precipitation (P), 

Relative Entropy (RE) and Seasonality Index (SI) for the historical period (1961-2000). 

Note: negative values imply an increase (decrease) in the number of dry (wet) days, 

whereas positive values imply a decrease (increase) in the number of dry (wet) days. 

Basins→  Indus Ganges Brahma Mekong 

Models WPR RE MPR RE WPR RE MPR RE WPR RE MPR RE WPR RE MPR RE 

 (days) (days) (days) (days) (days) (days) (days) (days) 

bcc-csm1-1 -4 0 1 7 1 -5 -2 -7 
BNU-ESM -3 4 -5 -1 -4 -4 -10 -6 
CanESM2 6 8 12 -14 3 -16 -12 -8 
CCSM4 -4 -6 0 -5 -6 -7 -14 -7 
CESM1-BGC -4 -7 1 -6 -9 -7 -7 -11 
CESM1-CAM5 -1 -1 6 -9 -3 -9 -9 -4 
CMCC-CESM -8 -4 -4 -5 -8 -1 -10 -5 
CMCC-CM -6 -2 -5 -5 -16 -8 -9 -12 
CMCC-CMS -10 -2 -7 -8 -19 -12 -9 -3 
CNRM-CM5 0 8 0 4 -1 6 -5 -3 
CSIRO-Mk3-6-0 -1 0 1 9 0 -6 -9 -3 
EC-EARTH -9 -11 -5 -14 -6 -5 -7 -11 
FGOALS-g2 -14 7 -10 17 -14 1 5 3 
GFDL-CM3 -8 16 -1 8 2 -5 -5 -1 
GFDL-ESM2G -3 -1 1 -12 5 -7 1 -3 
GFDL-ESM2M -2 -7 -1 -19 0 -7 -4 -6 
HadGEM2-CC -11 0 -2 5 -16 -13 -8 -13 
HadGEM2-ES -13 -3 -12 2 -19 -3 -5 -13 
inmcm4 -4 0 -4 -1 -1 5 -8 2 
IPSL-CM5A-LR -4 1 -7 3 -17 3 -15 -7 
IPSL-CM5A-MR -5 5 -4 5 -25 -3 -14 -9 
IPSL-CM5B-LR -7 6 -3 13 -6 3 -3 -3 
MIROC5 -13 6 -6 5 -5 -3 9 3 
MIROC-ESM-CHEM -8 4 -11 -2 7 -1 2 5 
MIROC-ESM -2 0 0 -2 7 0 4 6 
MPI-ESM-LR -7 -7 -6 -4 -15 -4 -11 -9 
MPI-ESM-MR -7 -7 -3 -6 -9 -9 -6 -5 
MRI-CGCM3 4 0 5 0 4 -4 -4 -7 
MRI-ESM1 0 2 1 3 -5 -4 -5 -7 

NorESM1-M -4 3 -8 -1 -8 -6 -4 2 
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Highlights 

Review on seasonal cycle of precipitation in CMIP5 models over major south Asian river basins 

Models feature limited skill in terms of the summer monsoonal metrics and seasonality indices 

Climate models need extensive improvement in region-specific geophysical representation.  

Qualitatively higher monsoon seasonality, less intermittent westerly precipitation regime in future 




